Displaying 61 – 80 of 162

Showing per page

Adaptive Dantzig density estimation

K. Bertin, E. Le Pennec, V. Rivoirard (2011)

Annales de l'I.H.P. Probabilités et statistiques

The aim of this paper is to build an estimate of an unknown density as a linear combination of functions of a dictionary. Inspired by Candès and Tao’s approach, we propose a minimization of the ℓ1-norm of the coefficients in the linear combination under an adaptive Dantzig constraint coming from sharp concentration inequalities. This allows to consider a wide class of dictionaries. Under local or global structure assumptions, oracle inequalities are derived. These theoretical results are transposed...

Adaptive density estimation for clustering with gaussian mixtures

C. Maugis-Rabusseau, B. Michel (2013)

ESAIM: Probability and Statistics

Gaussian mixture models are widely used to study clustering problems. These model-based clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures. In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically selecting the number of mixture components. In the present paper, a collection of univariate densities whose logarithm is locally β-Hölder with moment and tail conditions are considered. We show that this penalized...

Adaptive density estimation under weak dependence

Irène Gannaz, Olivier Wintenberger (2010)

ESAIM: Probability and Statistics

Assume that (Xt)t∈Z is a real valued time series admitting a common marginal density f with respect to Lebesgue's measure. [Donoho et al. Ann. Stat.24 (1996) 508–539] propose near-minimax estimators f ^ n based on thresholding wavelets to estimate f on a compact set in an independent and identically distributed setting. The aim of the present work is to extend these results to general weak dependent contexts. Weak dependence assumptions are expressed as decreasing bounds of covariance terms and are...

Adaptive estimation of a density function using beta kernels

Karine Bertin, Nicolas Klutchnikoff (2014)

ESAIM: Probability and Statistics

In this paper we are interested in the estimation of a density − defined on a compact interval of ℝ− from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated...

Adaptive estimation of a quadratic functional of a density by model selection

Béatrice Laurent (2005)

ESAIM: Probability and Statistics

We consider the problem of estimating the integral of the square of a density f from the observation of a n sample. Our method to estimate f 2 ( x ) d x is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for U -statistics of order 2 due to Houdré and Reynaud.

Adaptive estimation of a quadratic functional of a density by model selection

Béatrice Laurent (2010)

ESAIM: Probability and Statistics

We consider the problem of estimating the integral of the square of a density f from the observation of a n sample. Our method to estimate f 2 ( x ) d x is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for U-statistics of order 2 due to Houdré and Reynaud.

Adaptive estimation of the conditional intensity of marker-dependent counting processes

F. Comte, S. Gaïffas, A. Guilloux (2011)

Annales de l'I.H.P. Probabilités et statistiques

We propose in this work an original estimator of the conditional intensity of a marker-dependent counting process, that is, a counting process with covariates. We use model selection methods and provide a nonasymptotic bound for the risk of our estimator on a compact set. We show that our estimator reaches automatically a convergence rate over a functional class with a given (unknown) anisotropic regularity. Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we provide...

Adaptive estimation of the stationary density of discrete and continuous time mixing processes

Fabienne Comte, Florence Merlevède (2002)

ESAIM: Probability and Statistics

In this paper, we study the problem of non parametric estimation of the stationary marginal density f of an α or a β -mixing process, observed either in continuous time or in discrete time. We present an unified framework allowing to deal with many different cases. We consider a collection of finite dimensional linear regular spaces. We estimate f using a projection estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization...

Adaptive estimation of the stationary density of discrete and continuous time mixing processes

Fabienne Comte, Florence Merlevède (2010)

ESAIM: Probability and Statistics

In this paper, we study the problem of non parametric estimation of the stationary marginal density f of an α or a β-mixing process, observed either in continuous time or in discrete time. We present an unified framework allowing to deal with many different cases. We consider a collection of finite dimensional linear regular spaces. We estimate f using a projection estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization...

Adaptive goodness-of-fit testing from indirect observations

Cristina Butucea, Catherine Matias, Christophe Pouet (2009)

Annales de l'I.H.P. Probabilités et statistiques

In a convolution model, we observe random variables whose distribution is the convolution of some unknown density f and some known noise density g. We assume that g is polynomially smooth. We provide goodness-of-fit testing procedures for the test H0: f=f0, where the alternative H1is expressed with respect to 𝕃 2 -norm (i.e. has the form ψ n - 2 f - f 0 2 2 𝒞 ). Our procedure is adaptive with respect to the unknown smoothness parameterτ of f. Different testing rates (ψn) are obtained according to whether f0 is polynomially...

Adaptive hard-thresholding for linear inverse problems

Paul Rochet (2013)

ESAIM: Probability and Statistics

A number of regularization methods for discrete inverse problems consist in considering weighted versions of the usual least square solution. These filter methods are generally restricted to monotonic transformations, e.g. the Tikhonov regularization or the spectral cut-off. However, in several cases, non-monotonic sequences of filters may appear more appropriate. In this paper, we study a hard-thresholding regularization method that extends the spectral cut-off procedure to non-monotonic sequences....

Adaptive non-asymptotic confidence balls in density estimation

Matthieu Lerasle (2012)

ESAIM: Probability and Statistics

We build confidence balls for the common density s of a real valued sample X1,...,Xn. We use resampling methods to estimate the projection of s onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all n ≥ 2 and the balls are adaptive over a collection of linear spaces.

Adaptive non-asymptotic confidence balls in density estimation

Matthieu Lerasle (2012)

ESAIM: Probability and Statistics

We build confidence balls for the common density s of a real valued sample X1,...,Xn. We use resampling methods to estimate the projection of s onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all n ≥ 2 and the balls are adaptive over a collection of linear spaces.

Currently displaying 61 – 80 of 162