Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation
A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.
A dual-weighted residual approach for goal-oriented adaptive finite elements for a class of optimal control problems for elliptic variational inequalities is studied. The development is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Also, a priori bounds for C-stationary points and associated multipliers are derived. Details on the numerical...
The dyadic diaphony is a quantitative measure for the irregularity of distribution of a sequence in the unit cube. In this paper we give formulae for the dyadic diaphony of digital -sequences over , . These formulae show that for fixed , the dyadic diaphony has the same values for any digital -sequence. For , it follows that the dyadic diaphony and the diaphony of special digital -sequences are up to a constant the same. We give the exact asymptotic order of the dyadic diaphony of digital...
In this paper, we study the dynamic frictional contact of a viscoelastic beam with a deformable obstacle. The beam is assumed to be situated horizontally and to move, in both horizontal and tangential directions, by the effect of applied forces. The left end of the beam is clamped and the right one is free. Its horizontal displacement is constrained because of the presence of a deformable obstacle, the so-called foundation, which is modelled by a normal compliance contact condition. The effect...
A version of the dynamical systems method (DSM) for solving ill-conditioned linear algebraic systems is studied. An a priori and an a posteriori stopping rules are justified. An iterative scheme is constructed for solving ill-conditioned linear algebraic systems.
Various versions of the Dynamical Systems Method (DSM) are proposed for solving linear ill-posed problems with bounded and unbounded operators. Convergence of the proposed methods is proved. Some new results concerning the discrepancy principle for choosing the regularization parameter are obtained.
The slope shape is replaced by a 3D regression function which corresponds with high precision to the position of several hundred points which were determined on the surface of the slope body. The position of several points was repeatedly measured for several years. The time changes in the position of these points were used to create regression functions that describe vertical movements, slope settlement and horizontal movements, slope movement. The model results are presented in the form of mathematical...
We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow:...