Dorr, M.R.: Error Estimates for the Combined h and p Versions of the Finite Element Method.
The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated...
We study the numerical approximation of doubly reflected backward stochastic differential equations with intermittent upper barrier (RIBSDEs). These denote reflected BSDEs in which the upper barrier is only active on certain random time intervals. From the point of view of financial interpretation, RIBSDEs arise as pricing equations of game options with constrained callability. In a Markovian set-up we prove a convergence rate for a time-discretization scheme by simulation to an RIBSDE. We also...
This paper studies kinematic properties of the rear axle of the particle coach as function of driver’s activity. The main goals are the prediction of the trajectory, the computation of the vector of velocity of each wheel of the rear axle as a function of the real velocity vector of the front coach axle and the real curvature of the bus trajectory. The computer algebra system MAPLE was used for all necessary computations.
This is the second part of the paper for a Non-Newtonian flow. Dual combined Finite Element Methods are used to investigate the little parameter-dependent problem arising in a nonliner three field version of the Stokes system for incompressible fluids, where the viscosity obeys a general law including the Carreau's law and the Power law. Certain parameter-independent error bounds are obtained which solved the problem proposed by Baranger in [4] in a unifying way. We also give some stable finite...
The dual variational formulation of some free boundary value problem is given and its approximation by finite element method is studied, using piecewise linear elements with non-positive divergence.
Dual finite element analysis of the contact problem of two elastic bodies with an enlarging contact zone is presented. Approximations of the solution are defined on two types of triangulations by piecewise constant stress fields. Convergence is proved in both cases.
For an elliptic model problem with non-homogeneous unilateral boundary conditions, two dual variational formulations are presented and justified on the basis of a saddle point theorem. Using piecewise linear finite element models on the triangulation of the given domain, dual numerical procedures are proposed. By means of one-sided approximations, some a priori error estimates are proved, assuming that the solution is sufficiently smooth. A posteriori error estimates and two-sided bounds for the...
A model second order elliptic equation in cylindrical coordinates with mixed boundary conditions is considered. A dual variational formulation is employed to calculate the cogradient of the solution directly. Approximations are defined on the basis of standard finite elements spaces. Convergence analysis and some a posteriori error estimates are presented.
The paper describes the dual method for solving a special problem of quadratic programming as a subproblem at nonlinear minimax approximation. Two cases are analyzed in detail, differring in linear dependence of gradients of the active functions. The complete algorithm of the dual method is presented and its finite step convergence is proved.