The search session has expired. Please query the service again.
Displaying 501 –
520 of
762
In this paper, stability of linear neutral systems with distributed delay is investigated. A bounded half circular region which includes all unstable characteristic roots, is obtained. Using the argument principle, stability criteria are derived which are necessary and sufficient conditions for asymptotic stability of the neutral systems. The stability criteria need only to evaluate the characteristic function on a straight segment on the imaginary axis and the argument on the boundary of a bounded...
We consider some abstract nonlinear equations in a separable Hilbert space and some class of approximate equations on closed linear subspaces of . The main result concerns stability with respect to the approximation of the space . We prove that, generically, the set of all solutions of the exact equation is the limit in the sense of the Hausdorff metric over of the sets of approximate solutions, over some filterbase on the family of all closed linear subspaces of . The abstract results are...
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary....
We assume the nonlinear parabolic problem in a time dependent domain, where the evolution of the domain is described by a regular given mapping. The problem is discretized by the discontinuous Galerkin (DG) method modified by the right Radau quadrature in time with the aid of Arbitrary Lagrangian-Eulerian(ALE) formulation. The sketch of the proof of the stability of the method is shown.
We assume the heat equation in a time dependent domain, where the evolution of the domain is described by a given mapping. The problem is discretized by the discontinuous Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian (ALE) method. The sketch of the proof of the stability of the method is shown.
We consider a generalized 1-D von Foerster equation. We present two discretization methods for the initial value problem and study stability of finite difference schemes on regular meshes.
The stability of flat interfaces with respect to a spatial semidiscretization of a solidification model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with dynamical Gibbs–Thomson law. The stability analysis bases on an argument developed by Mullins and Sekerka for the undiscretized case. The obtained stability properties differ from those with respect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover, consequences...
The stability of flat interfaces with respect to a spatial
semidiscretization of a solidification model is analyzed. The
considered model is the quasi-static approximation of the Stefan
problem with dynamical Gibbs–Thomson law. The stability analysis
bases on an argument developed by Mullins and Sekerka for the
undiscretized case. The obtained stability properties differ from
those with respect to the quasi-static model for certain parameter
values and relatively coarse meshes. Moreover,...
Currently displaying 501 –
520 of
762