Displaying 501 – 520 of 762

Showing per page

Stability criteria of linear neutral systems with distributed delays

Guang-Da Hu (2011)

Kybernetika

In this paper, stability of linear neutral systems with distributed delay is investigated. A bounded half circular region which includes all unstable characteristic roots, is obtained. Using the argument principle, stability criteria are derived which are necessary and sufficient conditions for asymptotic stability of the neutral systems. The stability criteria need only to evaluate the characteristic function on a straight segment on the imaginary axis and the argument on the boundary of a bounded...

Stability for a certain class of numerical methods – abstract approach and application to the stationary Navier-Stokes equations

Elżbieta Motyl (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider some abstract nonlinear equations in a separable Hilbert space H and some class of approximate equations on closed linear subspaces of H . The main result concerns stability with respect to the approximation of the space H . We prove that, generically, the set of all solutions of the exact equation is the limit in the sense of the Hausdorff metric over H of the sets of approximate solutions, over some filterbase on the family of all closed linear subspaces of H . The abstract results are...

Stability of a finite element method for 3D exterior stationary Navier-Stokes flows

Paul Deuring (2007)

Applications of Mathematics

We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary....

Stability of ALE discontinuous Galerkin method with Radau quadrature

Vlasák, Miloslav (2019)

Programs and Algorithms of Numerical Mathematics

We assume the nonlinear parabolic problem in a time dependent domain, where the evolution of the domain is described by a regular given mapping. The problem is discretized by the discontinuous Galerkin (DG) method modified by the right Radau quadrature in time with the aid of Arbitrary Lagrangian-Eulerian(ALE) formulation. The sketch of the proof of the stability of the method is shown.

Stability of ALE space-time discontinuous Galerkin method

Vlasák, Miloslav, Balázsová, Monika, Feistauer, Miloslav (2017)

Proceedings of Equadiff 14

We assume the heat equation in a time dependent domain, where the evolution of the domain is described by a given mapping. The problem is discretized by the discontinuous Galerkin (DG) method in space as well as in time with the aid of Arbitrary Lagrangian-Eulerian (ALE) method. The sketch of the proof of the stability of the method is shown.

Stability of flat interfaces during semidiscrete solidification

Andreas Veeser (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The stability of flat interfaces with respect to a spatial semidiscretization of a solidification model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with dynamical Gibbs–Thomson law. The stability analysis bases on an argument developed by Mullins and Sekerka for the undiscretized case. The obtained stability properties differ from those with respect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover, consequences...

Stability of flat interfaces during semidiscrete solidification

Andreas Veeser (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The stability of flat interfaces with respect to a spatial semidiscretization of a solidification model is analyzed. The considered model is the quasi-static approximation of the Stefan problem with dynamical Gibbs–Thomson law. The stability analysis bases on an argument developed by Mullins and Sekerka for the undiscretized case. The obtained stability properties differ from those with respect to the quasi-static model for certain parameter values and relatively coarse meshes. Moreover,...

Currently displaying 501 – 520 of 762