Displaying 101 – 120 of 150

Showing per page

Boundary observability for the space semi-discretizations of the 1 – d wave equation

Juan Antonio Infante, Enrique Zuazua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider space semi-discretizations of the 1-d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability, i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a...

Boundary value problems for systems of functional differential equations

Tadeusz Jankowski (2002)

Applications of Mathematics

Algorithms for finding an approximate solution of boundary value problems for systems of functional ordinary differential equations are studied. Sufficient conditions for consistency and convergence of these methods are given. In the last section, a construction of methods of arbitrary order is presented.

Bounds and asymptotic expansions for the distribution of the Maximum of a smooth stationary Gaussian process

Jean-Marc Azaïs, Christine Cierco-Ayrolles, Alain Croquette (2010)

ESAIM: Probability and Statistics

This paper uses the Rice method [18] to give bounds to the distribution of the maximum of a smooth stationary Gaussian process. We give simpler expressions of the first two terms of the Rice series [3,13] for the distribution of the maximum. Our main contribution is a simpler form of the second factorial moment of the number of upcrossings which is in some sense a generalization of Steinberg et al.'s formula ([7] p. 212). Then, we present a numerical application and asymptotic expansions...

Bounds of modulus of eigenvalues based on Stein equation

Guang-Da Hu, Qiao Zhu (2010)

Kybernetika

This paper is concerned with bounds of eigenvalues of a complex matrix. Both lower and upper bounds of modulus of eigenvalues are given by the Stein equation. Furthermore, two sequences are presented which converge to the minimal and the maximal modulus of eigenvalues, respectively. We have to point out that the two sequences are not recommendable for practical use for finding the minimal and the maximal modulus of eigenvalues.

Bounds of the roots of the real polynomial

Imrich Komara (1987)

Aplikace matematiky

An algorithm for the calculation of a lower bound of the absolute values of the roots of a real algebraic polynomial, of an arbitrary degree, is derived. An example is given to compare the bounds calculated by the method proposed and by other methods.

Currently displaying 101 – 120 of 150