Smoothing by Spline Functions.
The purpose of this paper is to derive the error estimates for discretization in time of a semilinear parabolic equation in a Banach space. The estimates are given in the norm of the space for when the initial condition is not regular.
There has been much interest in studying symmetric cone complementarity problems. In this paper, we study the circular cone complementarity problem (denoted by CCCP) which is a type of nonsymmetric cone complementarity problem. We first construct two smoothing functions for the CCCP and show that they are all coercive and strong semismooth. Then we propose a smoothing algorithm to solve the CCCP. The proposed algorithm generates an infinite sequence such that the value of the merit function converges...
MSC 2010: 33C15, 33C05, 33C45, 65R10, 20C40The paper contains some new formulas involving the Whittaker functions and arising as the values of some double integrals, which are invariant with respect to the representation of the group SO(2; 1).
A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.