Displaying 161 – 180 of 758

Showing per page

Smoothing functions and algorithm for nonsymmetric circular cone complementarity problems

Jingyong Tang, Yuefen Chen (2022)

Applications of Mathematics

There has been much interest in studying symmetric cone complementarity problems. In this paper, we study the circular cone complementarity problem (denoted by CCCP) which is a type of nonsymmetric cone complementarity problem. We first construct two smoothing functions for the CCCP and show that they are all coercive and strong semismooth. Then we propose a smoothing algorithm to solve the CCCP. The proposed algorithm generates an infinite sequence such that the value of the merit function converges...

Solution for a classical problem in the calculus of variations via rationalized Haar functions

Mohsen Razzaghi, Yadollah Ordokhani (2001)

Kybernetika

A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.

Currently displaying 161 – 180 of 758