Study of stationary solutions in gene network models by the homotopy method.
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.
In this paper we are concerned with finite element approximations to the evaluation of American options. First, following W. Allegretto etc., SIAM J. Numer. Anal. 39 (2001), 834–857, we introduce a novel practical approach to the discussed problem, which involves the exact reformulation of the original problem and the implementation of the numerical solution over a very small region so that this algorithm is very rapid and highly accurate. Secondly by means of a superapproximation and interpolation...
The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be...
The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the Hamiltonian; next the solution to its stationary Hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the Hamiltonian function...
Some dynamical systems are characterized by more than one time-scale, e.g. two well separated time-scales are typical for quasiperiodic systems. The aim of this paper is to show how singular perturbation methods based on the slow-fast decomposition can serve for an enhanced parameter estimation when the slowly changing features are rigorously treated. Although the ultimate goal is to reduce the standard error for the estimated parameters, here we test two methods for numerical approximations of...
We consider the multiple ellipses detection problem on the basis of a data points set coming from a number of ellipses in the plane not known in advance, whereby an ellipse is viewed as a Mahalanobis circle with center , radius , and some positive definite matrix . A very efficient method for solving this problem is proposed. The method uses a modification of the -means algorithm for Mahalanobis-circle centers. The initial approximation consists of the set of circles whose centers are determined...
Differential evolution algorithms represent an up to date and efficient way of solving complicated optimization tasks. In this article we concentrate on the ability of the differential evolution algorithms to attain the global minimum of the cost function. We demonstrate that although often declared as a global optimizer the classic differential evolution algorithm does not in general guarantee the convergence to the global minimum. To improve this weakness we design a simple modification of the...
The cohomology ring of a finite group, with coefficients in a finite field, can be computed by a machine, as Carlson has showed. Here “compute” means to find a presentation in terms of generators and relations, and involves only the underlying (graded) ring. We propose a method to determine some of the extra structure: namely, Stiefel-Whitney classes and Steenrod operations. The calculations are explicitly carried out for about one hundred groups (the results can be consulted on the Internet).Next,...
For the symmetric Pareto Eigenvalue Complementarity Problem (EiCP), by reformulating it as a constrained optimization problem on a differentiable Rayleigh quotient function, we present a class of descent methods and prove their convergence. The main features include: using nonlinear complementarity functions (NCP functions) and Rayleigh quotient gradient as the descent direction, and determining the step size with exact linear search. In addition, these algorithms are further extended to solve the...
Searching for the optimal partitioning of a domain leads to the use of the adjoint method in topological asymptotic expansions to know the influence of a domain perturbation on a cost function. Our approach works by restricting to local subproblems containing the perturbation and outperforms the adjoint method by providing approximations of higher order. It is a universal tool, easily adapted to different kinds of real problems and does not need the fundamental solution of the problem; furthermore...