Displaying 481 – 500 of 882

Showing per page

Numerical modelling of steady and unsteady flows of generalized Newtonian fluids

Keslerová, Radka, Trdlička, David, Řezníček, Hynek (2017)

Programs and Algorithms of Numerical Mathematics

This work presents the numerical solution of laminar incompressible viscous flow in a three dimensional branching channel with circular cross section for generalized Newtonian fluids. This model can be generalized by cross model in shear thinning meaning. The governing system of equations is based on the system of balance laws for mass and momentum. Numerical tests are performed on a three dimensional geometry, the branching channel with one entrance and two outlet parts. Numerical solution of the...

Numerical optimization of parameters in systems of differential equations

Martínek, Josef, Kučera, Václav (2023)

Programs and Algorithms of Numerical Mathematics

We present results on the estimation of unknown parameters in systems of ordinary differential equations in order to fit the output of models to real data. The numerical method is based on the nonlinear least squares problem along with the solution of sensitivity equations corresponding to the differential equations. We will present the performance of the method on the problem of fitting the output of basic compartmental epidemic models to data from the Covid-19 epidemic. This allows us to draw...

Numerical precision for differential inclusions with uniqueness

Jérôme Bastien, Michelle Schatzman (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1 / 2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.

Numerical precision for differential inclusions with uniqueness

Jérôme Bastien, Michelle Schatzman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl's rheological model, our estimates in maximum norm do not depend on spatial dimension. ...

Numerical simulation of generalized Newtonian fluids flow in bypass geometry

Keslerová, Radka, Řezníček, Hynek, Padělek, Tomáš (2019)

Programs and Algorithms of Numerical Mathematics

The aim of this work is to present numerical results of non-Newtonian fluid flow in a model of bypass. Different angle of a connection between narrowed channel and the bypass graft is considered. Several rheology viscosity models were used for the non-Newtonian fluid, namely the modified Cross model and the Carreau-Yasuda model. The results of non-Newtonian fluid flow are compared to the results of Newtonian fluid. The fundamental system of equations is the generalized system of Navier-Stokes equations...

Numerical simulation of gluey particles

Aline Lefebvre (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...

Numerical simulation of gluey particles

Aline Lefebvre (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...

Numerical solution of a 1-d elastohydrodynamic problem in magnetic storage devices

Iñigo Arregui, José Jesús Cendán, Carlos Parés, Carlos Vázquez (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we present new numerical methods to simulate the mechanics of head-tape magnetic storage devices. The elastohydrodynamic problem is formulated in terms of a coupled system which is governed by a nonlinear compressible Reynolds equation for the air pressure over the head, and a rod model for the tape displacement. A fixed point algorithm between the solutions of the elastic and hydrodynamic problems is proposed. For the nonlinear Reynolds equation, a characteristics method and a...

Numerical solution of boundary value problems for selfadjoint differential equations of 2 n th order

Jiří Taufer (2004)

Applications of Mathematics

The paper is devoted to solving boundary value problems for self-adjoint linear differential equations of 2 n th order in the case that the corresponding differential operator is self-adjoint and positive semidefinite. The method proposed consists in transforming the original problem to solving several initial value problems for certain systems of first order ODEs. Even if this approach may be used for quite general linear boundary value problems, the new algorithms described here exploit the special...

Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets

Mahmood Jokar, Mehrdad Lakestani (2012)

Kybernetika

A numerical technique is presented for the solution of second order one dimensional linear hyperbolic equation. This method uses the trigonometric wavelets. The method consists of expanding the required approximate solution as the elements of trigonometric wavelets. Using the operational matrix of derivative, we reduce the problem to a set of algebraic linear equations. Some numerical example is included to demonstrate the validity and applicability of the technique. The method produces very accurate...

Numerical solution of the Maxwell equations in time-varying media using Magnus expansion

István Faragó, Ágnes Havasi, Robert Horváth (2012)

Open Mathematics

For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.

Currently displaying 481 – 500 of 882