Page 1

Displaying 1 – 2 of 2

Showing per page

Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients

Stefano Berrone (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ -scheme with 1 / 2 θ 1 . Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo 40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization...

Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients

Stefano Berrone (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ-scheme with 1/2 ≤ θ ≤ 1. Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization...

Currently displaying 1 – 2 of 2

Page 1