The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper addresses the two-asset Merton model for option pricing represented by non-stationary integro-differential equations with two state variables. The drawback of most classical methods for solving these types of equations is that the matrices arising from discretization are full and ill-conditioned. In this paper, we first transform the equation using logarithmic prices, drift removal, and localization. Then, we apply the Galerkin method with a recently proposed orthogonal cubic spline-wavelet...
This paper is devoted to barrier options and the main objective is to develop a sufficiently robust, accurate and efficient method for computation of their values driven according to the well-known Black-Scholes equation. The main idea is based on the discontinuous Galerkin method together with a spatial adaptive approach. This combination seems to be a promising technique for the solving of such problems with discontinuous solutions as well as for consequent optimization of the number of degrees...
We propose a variational analysis for a Black and Scholes equation with stochastic volatility. This equation gives the price of a European option as a function of the time, of the price of the underlying asset and of the volatility when the volatility is a function of a mean reverting Orstein-Uhlenbeck process, possibly correlated with the underlying asset. The variational analysis involves weighted Sobolev spaces. It enables to prove qualitative properties of the solution, namely a maximum principle...
We propose a variational analysis for a Black and Scholes equation with stochastic volatility. This equation gives the price of a European option as a function of the time, of the price of the underlying asset and of the volatility when the volatility is a function of a mean reverting Orstein-Uhlenbeck process, possibly correlated with the underlying asset. The variational analysis involves weighted Sobolev spaces. It enables to prove qualitative properties of the solution, namely a maximum principle...
Parameter sensitivities of prices for derivative contracts play an important role in model calibration as well as in quantification of model risk. In this paper a unified approach to the efficient numerical computation of all sensitivities for Markovian market models is presented. Variational approximations of the integro-differential equations corresponding to the infinitesimal generators of the market model differentiated with respect to the model parameters are employed. Superconvergent approximations...
This paper concerns the discretization of multiphase Darcy flows, in the case of
heterogeneous anisotropic porous media and general 3D meshes used in practice to represent
reservoir and basin geometries. An unconditionally coercive and symmetric vertex centred
approach is introduced in this paper. This scheme extends the Vertex Approximate Gradient
scheme (VAG), already introduced for single phase diffusive problems in [9], to multiphase
Darcy flows....
Currently displaying 1 –
7 of
7