Loading [MathJax]/extensions/MathZoom.js
We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...
We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...
We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...
We solve a linear parabolic equation in , with the third nonhomogeneous boundary condition using the finite element method for discretization in space, and the -method for discretization in time. The convergence of both, the semidiscrete approximations and the fully discretized ones, is analysed. The proofs are based on a generalization of the idea of the elliptic projection. The rate of convergence is derived also for variable time step-sizes.
We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
We consider discontinuous as well as continuous Galerkin
methods for the time discretization of a class of nonlinear
parabolic equations. We show existence and local uniqueness
and derive optimal order optimal regularity a priori error
estimates. We establish the results in an abstract Hilbert space
setting and apply them to a quasilinear parabolic equation.
The assessment of vibration characteristics in slender engineering structures, influenced by both deterministic harmonic and stochastic excitation, poses a challenging problem. Due to its complexity, transverse vibration of the structure (relative to the wind direction) is typically modelled using the single-degree-of-freedom van der Pol-type equation. Determining the response probability density function comprises solving the Fokker-Planck equation, a task that generally necessitates the use of...
In this paper we describe PDELab, an extensible C++ template library for finite element methods based on the Distributed and Unified Numerics Environment (Dune). PDELab considerably simplifies the implementation of discretization schemes for systems of partial differential equations by setting up global functions and operators from a simple element-local description. A general concept for incorporation of constraints eases the implementation of essential boundary conditions, hanging nodes and varying...
In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.
This paper is concerned with goal-oriented a posteriori error estimates for discontinous Galerkin discretizations of linear elliptic boundary value problems. Our approach combines the Dual Weighted Residual method (DWR) with local weighted least-squares reconstruction of the discrete solution. This technique is used not only for controlling the discretization error, but also to track the influence of the algebraic errors. We illustrate the performance of the proposed method by numerical experiments....
We describe a numerical technique for the solution of macroscopic traffic flow models on networks of roads. On individual roads, we consider the standard Lighthill-Whitham-Richards model which is discretized using the discontinuous Galerkin method along with suitable limiters. In order to solve traffic flows on networks, we construct suitable numerical fluxes at junctions based on preferences of the drivers. Numerical experiment comparing different approaches is presented.
The adjustment of one-dimensional space grid for a parabolic partial differential equation solved by the finite element method of lines is considered in the paper. In particular, the approach based on a posteriori error indicators and error estimators is studied. A statement on the rate of convergence of the approximation of error by estimator to the error in the case of a system of parabolic equations is presented.
Currently displaying 1 –
14 of
14