Displaying 201 – 220 of 441

Showing per page

Finite element methods on non-conforming grids by penalizing the matching constraint

Eric Boillat (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.

Finite element methods on non-conforming grids by penalizing the matching constraint

Eric Boillat (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.

Finite element solution of the fundamental equations of semiconductor devices. II

Miloš Zlámal (2001)

Applications of Mathematics

In part I of the paper (see Zlámal [13]) finite element solutions of the nonstationary semiconductor equations were constructed. Two fully discrete schemes were proposed. One was nonlinear, the other partly linear. In this part of the paper we justify the nonlinear scheme. We consider the case of basic boundary conditions and of constant mobilities and prove that the scheme is unconditionally stable. Further, we show that the approximate solution, extended to the whole time interval as a piecewise...

Finite volume schemes for fully non-linear elliptic equations in divergence form

Jérôme Droniou (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct finite volume schemes, on unstructured and irregular grids and in any space dimension, for non-linear elliptic equations of the p -laplacian kind: - div ( | u | p - 2 u ) = f (with 1 < p < ). We prove the existence and uniqueness of the approximate solutions, as well as their strong convergence towards the solution of the PDE. The outcome of some numerical tests are also provided.

Finite volume schemes for fully non-linear elliptic equations in divergence form

Jérôme Droniou (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct finite volume schemes, on unstructured and irregular grids and in any space dimension, for non-linear elliptic equations of the p-Laplacian kind: -div(|∇u|p-2∇u) = ƒ (with 1 < p < ∞). We prove the existence and uniqueness of the approximate solutions, as well as their strong convergence towards the solution of the PDE. The outcome of some numerical tests are also provided.

Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems

Paola Causin, Riccardo Sacco, Carlo L. Bottasso (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum...

Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems

Paola Causin, Riccardo Sacco, Carlo L. Bottasso (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete...

Generalization of the Zlámal condition for simplicial finite elements in d

Jan Brandts, Sergey Korotov, Michal Křížek (2011)

Applications of Mathematics

The famous Zlámal’s minimum angle condition has been widely used for construction of a regular family of triangulations (containing nondegenerating triangles) as well as in convergence proofs for the finite element method in 2 d . In this paper we present and discuss its generalization to simplicial partitions in any space dimension.

Generalizations of the Finite Element Method

Marc Schweitzer (2012)

Open Mathematics

This paper is concerned with the generalization of the finite element method via the use of non-polynomial enrichment functions. Several methods employ this general approach, e.g. the extended finite element method and the generalized finite element method. We review these approaches and interpret them in the more general framework of the partition of unity method. Here we focus on fundamental construction principles, approximation properties and stability of the respective numerical method. To...

h p -FEM for three-dimensional elastic plates

Monique Dauge, Christoph Schwab (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, we analyze hierarchic h p -finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the h p -FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness ε tends to zero, the h p -discretization is consistent with the three-dimensional solution to any power of ε in the energy...

H P -finite element approximations on non-matching grids for partial differential equations with non-negative characteristic form

Andrea Toselli (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and analyze a domain decomposition method on non-matching grids for partial differential equations with non-negative characteristic form. No weak or strong continuity of the finite element functions, their normal derivatives, or linear combinations of the two is imposed across the boundaries of the subdomains. Instead, we employ suitable bilinear forms defined on the common interfaces, typical of discontinuous Galerkin approximations. We prove an error bound which is optimal with respect...

hp-FEM for three-dimensional elastic plates

Monique Dauge, Christoph Schwab (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we analyze hierarchic hp-finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the hp-FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness ε tends to zero, the hp-discretization is consistent with the three-dimensional solution to any power of ε in...

HP-finite element approximations on non-matching grids for partial differential equations with non-negative characteristic form

Andrea Toselli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze a domain decomposition method on non-matching grids for partial differential equations with non-negative characteristic form. No weak or strong continuity of the finite element functions, their normal derivatives, or linear combinations of the two is imposed across the boundaries of the subdomains. Instead, we employ suitable bilinear forms defined on the common interfaces, typical of discontinuous Galerkin approximations. We prove an error bound which is optimal with respect...

Hybrid model for the Coupling of an Asymptotic Preserving scheme with the Asymptotic Limit model: The One Dimensional Case⋆

Pierre Degond, Fabrice Deluzet, Dario Maldarella, Jacek Narski, Claudia Negulescu, Martin Parisot (2011)

ESAIM: Proceedings

In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, elliptic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed...

Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients⋆⋆⋆

J. Beck, F. Nobile, L. Tamellini, R. Tempone (2011)

ESAIM: Proceedings

In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce...

Implicit a posteriori error estimation using patch recovery techniques

Tamás Horváth, Ferenc Izsák (2012)

Open Mathematics

We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging...

Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels

Jan Brousek, Pavla Fraňková, Petr Vaněk (2016)

Czechoslovak Mathematical Journal

The smoothed aggregation method has became a widely used tool for solving the linear systems arising by the discretization of elliptic partial differential equations and their singular perturbations. The smoothed aggregation method is an algebraic multigrid technique where the prolongators are constructed in two steps. First, the tentative prolongator is constructed by the aggregation (or, the generalized aggregation) method. Then, the range of the tentative prolongator is smoothed by a sparse linear...

Currently displaying 201 – 220 of 441