Estimation de l'erreur d'interpolation d'Hermite dans IR".
The non-conforming linear () triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming triangle. Some applications...
The paper develops an explicit a priori error estimate for finite element solution to nonhomogeneous Neumann problems. For this purpose, the hypercircle over finite element spaces is constructed and the explicit upper bound of the constant in the trace theorem is given. Numerical examples are shown in the final section, which implies the proposed error estimate has the convergence rate as .
The Poisson equation with non-homogeneous unilateral condition on the boundary is solved by means of finite elements. The primal variational problem is approximated on the basis of linear triangular elements, and -convergence is proved provided the exact solution is regular enough. For the dual problem piecewise linear divergence-free approximations are employed and -convergence proved for a regular solution. Some a posteriori error estimates are also presented.