Caractéristiques d'approximation des compacts dans les espaces fonctionnels et problèmes aux limites elliptiques
The paper is devoted to the convergence analysis of a well-known cell-centered Finite Volume Method (FVM) for a convection-diffusion problem in . This FVM is based on Voronoi boxes and exponential fitting. To prove the convergence of the FVM, we use a new nonconforming Petrov-Galerkin Finite Element Method (FEM) for which the system of linear equations coincides completely with that of the FVM. Thus, by proving convergence properties of the FEM we obtain similar ones for the FVM. For the error...
In this paper, two algorithms are proposed to solve systems of algebraic equations generated by a discretization procedure of the weak formulation of boundary value problems for systems of nonlinear elliptic equations. The first algorithm, Newton-CG-MG, is suitable for systems with gradient mappings, while the second, Newton-CE-MG, can be applied to more general systems. Convergence theorems are proved and application to the semiconductor device modelling is described.
Curved triangular -elements which can be pieced together with the generalized Bell’s -elements are constructed. They are applied to solving the Dirichlet problem of an elliptic equation of the order in a domain with a smooth boundary by the finite element method. The effect of numerical integration is studied, sufficient conditions for the existence and uniqueness of the approximate solution are presented and the rate of convergence is estimated. The rate of convergence is the same as in the...
An axisymmetric second order elliptic problem with mixed boundary conditions is considered. The shape of the domain has to be found so as to minimize a cost functional, which is given in terms of the cogradient of the solution. A new dual finite element method is used for approximate solutions. The existence of an optimal domain is proven and a convergence analysis presented.
An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces.
Extensions from into (where ) are constructed in such a way that extended functions satisfy prescribed boundary conditions on the boundary of . The corresponding extension operator is linear and bounded.
In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum...
In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete...