Problème de Dirichlet dans l'image Bilipschitzienne d'un demi-espace.
This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nanoobjects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided...
Proper orthogonal decomposition (POD) is a powerful technique for model reduction of non-linear systems. It is based on a Galerkin type discretization with basis elements created from the dynamical system itself. In the context of optimal control this approach may suffer from the fact that the basis elements are computed from a reference trajectory containing features which are quite different from those of the optimally controlled trajectory. A method is proposed which avoids this problem of unmodelled...
In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence...
The Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the minimum angle...
We present a weak parametrix of the operator of the CFIE equation. An interesting feature of this parametrix is that it is compatible with different discretization strategies and hence allows for the construction of efficient preconditioners dedicated to the CFIE. Furthermore, one shows that the underlying operator of the CFIE verifies an uniform discrete Inf-Sup condition which allows to predict an original convergence result of the numerical solution of the CFIE to the exact one.
On exhibe dans cette note une paramétrix (au sens faible) de l'opérateur sous-jacent à l'équation CFIE de l'électromagnétisme. L'intérêt de cette paramétrix est de se prêter à différentes stratégies de discrétisation et ainsi de pouvoir être utilisée comme préconditionneur de la CFIE. On montre aussi que l'opérateur sous-jacent à la CFIE satisfait une condition Inf-Sup discrète uniforme, applicable aux espaces de discrétisation usuellement rencontrés en électromagnétisme, et qui permet d'établir...
We analyze a numerical model for the Signorini unilateral contact, based on the mortar method, in the quadratic finite element context. The mortar frame enables one to use non-matching grids and brings facilities in the mesh generation of different components of a complex system. The convergence rates we state here are similar to those already obtained for the Signorini problem when discretized on conforming meshes. The matching for the unilateral contact driven by mortars preserves then the proper...
Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are...
One of the main tools in the proof of residual-based a posteriori error estimates is a quasi-interpolation operator due to Clément. We modify this operator in the setting of a partition of unity with the effect that the approximation error has a local average zero. This results in a new residual-based a posteriori error estimate with a volume contribution which is smaller than in the standard estimate. For an elliptic model problem, we discuss applications to conforming, nonconforming and mixed...
Anisotropic adaptive methods based on a metric related to the Hessian of the solution are considered. We propose a metric targeted to the minimization of interpolation error gradient for a nonconforming linear finite element approximation of a given piecewise regular function on a polyhedral domain Ω of ℝd, d ≥ 2. We also present an algorithm generating a sequence of asymptotically quasi-optimal meshes relative to such a nonconforming...