Displaying 1661 – 1680 of 2184

Showing per page

Proposition de préconditionneurs pseudo-différentiels pour l'équation CFIE de l'électromagnétisme

David P. Levadoux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

On exhibe dans cette note une paramétrix (au sens faible) de l'opérateur sous-jacent à l'équation CFIE de l'électromagnétisme. L'intérêt de cette paramétrix est de se prêter à différentes stratégies de discrétisation et ainsi de pouvoir être utilisée comme préconditionneur de la CFIE. On montre aussi que l'opérateur sous-jacent à la CFIE satisfait une condition Inf-Sup discrète uniforme, applicable aux espaces de discrétisation usuellement rencontrés en électromagnétisme, et qui permet d'établir...

Quadratic finite elements with non-matching grids for the unilateral boundary contact

S. Auliac, Z. Belhachmi, F. Ben Belgacem, F. Hecht (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a numerical model for the Signorini unilateral contact, based on the mortar method, in the quadratic finite element context. The mortar frame enables one to use non-matching grids and brings facilities in the mesh generation of different components of a complex system. The convergence rates we state here are similar to those already obtained for the Signorini problem when discretized on conforming meshes. The matching for the unilateral contact driven by mortars preserves then the proper...

Quantum optimal control using the adjoint method

Alfio Borzì (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are...

Quasi-Interpolation and A Posteriori Error Analysis in Finite Element Methods

Carsten Carstensen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

One of the main tools in the proof of residual-based a posteriori error estimates is a quasi-interpolation operator due to Clément. We modify this operator in the setting of a partition of unity with the effect that the approximation error has a local average zero. This results in a new residual-based a posteriori error estimate with a volume contribution which is smaller than in the standard estimate. For an elliptic model problem, we discuss applications to conforming, nonconforming and mixed...

Quasi-Optimal Triangulations for Gradient Nonconforming Interpolates of Piecewise Regular Functions

A. Agouzal, N. Debit (2010)

Mathematical Modelling of Natural Phenomena

Anisotropic adaptive methods based on a metric related to the Hessian of the solution are considered. We propose a metric targeted to the minimization of interpolation error gradient for a nonconforming linear finite element approximation of a given piecewise regular function on a polyhedral domain Ω of ℝd, d ≥ 2. We also present an algorithm generating a sequence of asymptotically quasi-optimal meshes relative to such a nonconforming...

Recent developments in wavelet methods for the solution of PDE's

Silvia Bertoluzza (2005)

Bollettino dell'Unione Matematica Italiana

After reviewing some of the properties of wavelet bases, and in particular the property of characterisation of function spaces via wavelet coefficients, we describe two new approaches to, respectively, stabilisation of numerically unstable PDE's and to non linear (adaptive) solution of PDE's, which are made possible by these properties.

Reconstruction algorithms for an inverse medium problem

Ji-Chuan Liu (2018)

Applications of Mathematics

In this paper, we consider a two-dimensional inverse medium problem from noisy observation data. We propose effective reconstruction algorithms to detect the number, the location and the size of the piecewise constant medium within a body, and then we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear and ill-posed, thus we should consider stable and elegant approaches in order to improve the corresponding approximation. We give several examples to show the viability...

Reconstruction of thickness variation of a dielectric coating through the generalized impedance boundary conditions

Birol Aslanyürek, Hülya Sahintürk (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We deal with an inverse scattering problem whose aim is to determine the thickness variation of a dielectric thin coating located on a conducting structure of unknown shape. The inverse scattering problem is solved through the application of the Generalized Impedance Boundary Conditions (GIBCs) which contain the thickness, curvature as well as material properties of the coating and they have been obtained in the previous work [B. Aslanyürek, H. Haddar and H.Şahintürk, Wave Motion 48 (2011) 681–700]...

Currently displaying 1661 – 1680 of 2184