Displaying 1661 – 1680 of 2188

Showing per page

Proper orthogonal decomposition for optimality systems

Karl Kunisch, Stefan Volkwein (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Proper orthogonal decomposition (POD) is a powerful technique for model reduction of non-linear systems. It is based on a Galerkin type discretization with basis elements created from the dynamical system itself. In the context of optimal control this approach may suffer from the fact that the basis elements are computed from a reference trajectory containing features which are quite different from those of the optimally controlled trajectory. A method is proposed which avoids this problem of unmodelled...

Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems

Chang-Ho Song, Yong-Gon Ri, Cholmin Sin (2022)

Applications of Mathematics

In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence...

Properties of triangulations obtained by the longest-edge bisection

Francisco Perdomo, Ángel Plaza (2014)

Open Mathematics

The Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the minimum angle...

Proposition de préconditionneurs pseudo-différentiels pour l’équation CFIE de l’électromagnétisme

David P. Levadoux (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a weak parametrix of the operator of the CFIE equation. An interesting feature of this parametrix is that it is compatible with different discretization strategies and hence allows for the construction of efficient preconditioners dedicated to the CFIE. Furthermore, one shows that the underlying operator of the CFIE verifies an uniform discrete Inf-Sup condition which allows to predict an original convergence result of the numerical solution of the CFIE to the exact one.

Proposition de préconditionneurs pseudo-différentiels pour l'équation CFIE de l'électromagnétisme

David P. Levadoux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

On exhibe dans cette note une paramétrix (au sens faible) de l'opérateur sous-jacent à l'équation CFIE de l'électromagnétisme. L'intérêt de cette paramétrix est de se prêter à différentes stratégies de discrétisation et ainsi de pouvoir être utilisée comme préconditionneur de la CFIE. On montre aussi que l'opérateur sous-jacent à la CFIE satisfait une condition Inf-Sup discrète uniforme, applicable aux espaces de discrétisation usuellement rencontrés en électromagnétisme, et qui permet d'établir...

Quadratic finite elements with non-matching grids for the unilateral boundary contact

S. Auliac, Z. Belhachmi, F. Ben Belgacem, F. Hecht (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a numerical model for the Signorini unilateral contact, based on the mortar method, in the quadratic finite element context. The mortar frame enables one to use non-matching grids and brings facilities in the mesh generation of different components of a complex system. The convergence rates we state here are similar to those already obtained for the Signorini problem when discretized on conforming meshes. The matching for the unilateral contact driven by mortars preserves then the proper...

Quantum optimal control using the adjoint method

Alfio Borzì (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Control of quantum systems is central in a variety of present and perspective applications ranging from quantum optics and quantum chemistry to semiconductor nanostructures, including the emerging fields of quantum computation and quantum communication. In this paper, a review of recent developments in the field of optimal control of quantum systems is given with a focus on adjoint methods and their numerical implementation. In addition, the issues of exact controllability and optimal control are...

Quasi-Interpolation and A Posteriori Error Analysis in Finite Element Methods

Carsten Carstensen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

One of the main tools in the proof of residual-based a posteriori error estimates is a quasi-interpolation operator due to Clément. We modify this operator in the setting of a partition of unity with the effect that the approximation error has a local average zero. This results in a new residual-based a posteriori error estimate with a volume contribution which is smaller than in the standard estimate. For an elliptic model problem, we discuss applications to conforming, nonconforming and mixed...

Quasi-Optimal Triangulations for Gradient Nonconforming Interpolates of Piecewise Regular Functions

A. Agouzal, N. Debit (2010)

Mathematical Modelling of Natural Phenomena

Anisotropic adaptive methods based on a metric related to the Hessian of the solution are considered. We propose a metric targeted to the minimization of interpolation error gradient for a nonconforming linear finite element approximation of a given piecewise regular function on a polyhedral domain Ω of ℝd, d ≥ 2. We also present an algorithm generating a sequence of asymptotically quasi-optimal meshes relative to such a nonconforming...

Recent developments in wavelet methods for the solution of PDE's

Silvia Bertoluzza (2005)

Bollettino dell'Unione Matematica Italiana

After reviewing some of the properties of wavelet bases, and in particular the property of characterisation of function spaces via wavelet coefficients, we describe two new approaches to, respectively, stabilisation of numerically unstable PDE's and to non linear (adaptive) solution of PDE's, which are made possible by these properties.

Currently displaying 1661 – 1680 of 2188