Displaying 1921 – 1940 of 2188

Showing per page

The discrete maximum principle for Galerkin solutions of elliptic problems

Tomáš Vejchodský (2012)

Open Mathematics

This paper provides an equivalent characterization of the discrete maximum principle for Galerkin solutions of general linear elliptic problems. The characterization is formulated in terms of the discrete Green’s function and the elliptic projection of the boundary data. This general concept is applied to the analysis of the discrete maximum principle for the higher-order finite elements in one-dimension and to the lowest-order finite elements on simplices of arbitrary dimension. The paper surveys...

The effect of reduced integration in the Steklov eigenvalue problem

Maria G. Armentano (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.

The effect of reduced integration in the Steklov eigenvalue problem

María G. Armentano (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.

The existence and uniqueness theorem in Biot's consolidation theory

Alexander Ženíšek (1984)

Aplikace matematiky

Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.

The finite element solution of parabolic equations

Josef Nedoma (1978)

Aplikace matematiky

In contradistinction to former results, the error bounds introduced in this paper are given for fully discretized approximate soltuions of parabolic equations and for arbitrary curved domains. Simplicial isoparametric elements in n -dimensional space are applied. Degrees of accuracy of quadrature formulas are determined so that numerical integration does not worsen the optimal order of convergence in L 2 -norm of the method.

The G method for heterogeneous anisotropic diffusion on general meshes

Léo Agélas, Daniele A. Di Pietro, Jérôme Droniou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work we introduce a new family of cell-centered Finite Volume schemes for anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very general framework for the convergence study of finite volume methods is provided and then used to establish the convergence of the new method. Fairly general meshes are covered and a computable sufficient criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous diffusivity,...

Currently displaying 1921 – 1940 of 2188