Displaying 581 – 600 of 893

Showing per page

On the Number of Partitions of an Integer in the m -bonacci Base

Marcia Edson, Luca Q. Zamboni (2006)

Annales de l’institut Fourier

For each m 2 , we consider the m -bonacci numbers defined by F k = 2 k for 0 k m - 1 and F k = F k - 1 + F k - 2 + + F k - m for k m . When m = 2 , these are the usual Fibonacci numbers. Every positive integer n may be expressed as a sum of distinct m -bonacci numbers in one or more different ways. Let R m ( n ) be the number of partitions of n as a sum of distinct m -bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for R m ( n ) involving sums of binomial coefficients modulo 2 . In addition we show that this formula may be used to determine the number of partitions...

On the number of squares in partial words

Vesa Halava, Tero Harju, Tomi Kärki (2010)

RAIRO - Theoretical Informatics and Applications

The theorem of Fraenkel and Simpson states that the maximum number of distinct squares that a word w of length n can contain is less than 2n. This is based on the fact that no more than two squares can have their last occurrences starting at the same position. In this paper we show that the maximum number of the last occurrences of squares per position in a partial word containing one hole is 2k, where k is the size of the alphabet. Moreover, we prove that the number of distinct squares in a partial...

On the parallel complexity of the alternating Hamiltonian cycle problem

E. Bampis, Y. Manoussakis, I. Milis (2010)

RAIRO - Operations Research

Given a graph with colored edges, a Hamiltonian cycle is called alternating if its successive edges differ in color. The problem of finding such a cycle, even for 2-edge-colored graphs, is trivially NP-complete, while it is known to be polynomial for 2-edge-colored complete graphs. In this paper we study the parallel complexity of finding such a cycle, if any, in 2-edge-colored complete graphs. We give a new characterization for such a graph admitting an alternating Hamiltonian cycle which allows...

On the product of balanced sequences

Antonio Restivo, Giovanna Rosone (2012)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The product w = u ⊗ v of two sequences u and v is a naturally defined sequence on the alphabet of pairs of symbols. Here, we study when the product w of two balanced sequences u,v is balanced too. In the case u and v are binary sequences, we prove, as a main result, that, if such a product w is balanced and deg(w) = 4, then w is an ultimately periodic sequence of a very special form. The case of arbitrary alphabets is approached in the last section. The partial results obtained and the problems...

On the product of balanced sequences

Antonio Restivo, Giovanna Rosone (2012)

RAIRO - Theoretical Informatics and Applications

The product w = u ⊗ v of two sequences u and v is a naturally defined sequence on the alphabet of pairs of symbols. Here, we study when the product w of two balanced sequences u,v is balanced too. In the case u and v are binary sequences, we prove, as a main result, that, if such a product w is balanced and deg(w) = 4, then w is an ultimately periodic sequence of a very special form. The case of arbitrary alphabets is approached in the last section. The partial results obtained and the problems...

On the proper intervalization of colored caterpillar trees

Carme Àlvarez, Maria Serna (2009)

RAIRO - Theoretical Informatics and Applications

This paper studies the computational complexity of the proper interval colored graph problem (PICG), when the input graph is a colored caterpillar, parameterized by hair length. In order prove our result we establish a close relationship between the PICG and a graph layout problem the proper colored layout problem (PCLP). We show a dichotomy: the PICG and the PCLP are NP-complete for colored caterpillars of hair length ≥2, while both problems are in P for colored caterpillars of hair length <2. For...

On the simplest centralizer of a language

Paolo Massazza, Petri Salmela (2006)

RAIRO - Theoretical Informatics and Applications

Given a finite alphabet Σ and a language L ⊆ ∑+, the centralizer of L is defined as the maximal language commuting with it. We prove that if the primitive root of the smallest word of L (with respect to a lexicographic order) is prefix distinguishable in L then the centralizer of L is as simple as possible, that is, the submonoid L*. This lets us obtain a simple proof of a known result concerning the centralizer of nonperiodic three-word languages.

On the stack-size of general tries

Jérémie Bourdon, Markus Nebel, Brigitte Vallée (2001)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Digital trees or tries are a general purpose flexible data structure that implements dictionaries built on words. The present paper is focussed on the average-case analysis of an important parameter of this tree-structure, i.e., the stack-size. The stack-size of a tree is the memory needed by a storage-optimal preorder traversal. The analysis is carried out under a general model in which words are produced by a source (in the information-theoretic sense) that emits symbols. Under some natural assumptions...

On the Stack-Size of General Tries

Jérémie Bourdon, Markus Nebel, Brigitte Vallée (2010)

RAIRO - Theoretical Informatics and Applications

Digital trees or tries are a general purpose flexible data structure that implements dictionaries built on words. The present paper is focussed on the average-case analysis of an important parameter of this tree-structure, i.e., the stack-size. The stack-size of a tree is the memory needed by a storage-optimal preorder traversal. The analysis is carried out under a general model in which words are produced by a source (in the information-theoretic sense) that emits symbols. Under some natural...

On the structure of (−β)-integers

Wolfgang Steiner (2012)

RAIRO - Theoretical Informatics and Applications

The (−β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (−β)-integers by a fixed point of an anti-morphism.

On the tree structure of the power digraphs modulo n

Amplify Sawkmie, Madan Mohan Singh (2015)

Czechoslovak Mathematical Journal

For any two positive integers n and k 2 , let G ( n , k ) be a digraph whose set of vertices is { 0 , 1 , ... , n - 1 } and such that there is a directed edge from a vertex a to a vertex b if a k b ( mod n ) . Let n = i = 1 r p i e i be the prime factorization of n . Let P be the set of all primes dividing n and let P 1 , P 2 P be such that P 1 P 2 = P and P 1 P 2 = . A fundamental constituent of G ( n , k ) , denoted by G P 2 * ( n , k ) , is a subdigraph of G ( n , k ) induced on the set of vertices which are multiples of p i P 2 p i and are relatively prime to all primes q P 1 . L. Somer and M. Křížek proved that the trees attached to all cycle...

On the Vertex Separation of Cactus Graphs

Markov, Minko (2007)

Serdica Journal of Computing

This paper is part of a work in progress whose goal is to construct a fast, practical algorithm for the vertex separation (VS) of cactus graphs. We prove a theorem for cacti", a necessary and sufficient condition for the VS of a cactus graph being k. Further, we investigate the ensuing ramifications that prevent the construction of an algorithm based on that theorem only.

On transitive orientations of G-ê

Michael Andresen (2009)

Discussiones Mathematicae Graph Theory

A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈ E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.

On ƒ-wise Arc Forwarding Index and Wavelength Allocations in Faulty All-optical Hypercubes

Ján Maňuch, Ladislav Stacho (2010)

RAIRO - Theoretical Informatics and Applications

Motivated by the wavelength division multiplexing in all-optical networks, we consider the problem of finding an optimal (with respect to the least possible number of wavelengths) set of ƒ+1 internally node disjoint dipaths connecting all pairs of distinct nodes in the binary r-dimensional hypercube, where 0 ≤ ƒ < r. This system of dipaths constitutes a routing protocol that remains functional in the presence of up to ƒ faults (of nodes and/or links). The problem of constructing such...

Currently displaying 581 – 600 of 893