Several cohomology algebras connected with Poisson structure.
Page 1
Giunashvili, Z. (1998)
Georgian Mathematical Journal
Stanisław Janeczko, Fernand Pelletier (2003)
Banach Center Publications
The integrability condition for the Lagrangian implicit differential systems of (TP,ω̇), introduced in [7], is applied for the specialized control theory systems. The Pontryagin maximum principle was reformulated in the framework of implicit differential systems and the corresponding necessary and sufficient conditions were proved. The beginning of the classification list of normal forms for Lagrangian implicit differential systems according to the symplectic equivalence is provided and the corresponding...
Takuo Fukuda, Stanisław Janeczko (2004)
Banach Center Publications
Antonio Ambrosetti, Giovanni Mancini (1981)
Mathematische Annalen
J. M. Lasry (1982/1983)
Séminaire Équations aux dérivées partielles (Polytechnique)
Marcella Palese, Ekkehart Winterroth (2006)
Archivum Mathematicum
We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein...
Duca, Iulian, Udrişte, Constantin (2006)
Balkan Journal of Geometry and its Applications (BJGA)
Paul, S.N., Chakraborty, B., Debnath, L. (1985)
International Journal of Mathematics and Mathematical Sciences
Patricio L. Felmer (1990)
Manuscripta mathematica
Olivier Vivolo (1997)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Phan Nguyen Huynh (1994)
Annales de l'institut Fourier
Dans cet article nous donnons les formes normales des sytèmes linéaires hamiltoniens antisymétriques accessibles . Nous construisons une stratification et une décomposition cellulaire analytique de , puis nous prouvons que son groupe d’homotopie est isomorphe à celui d’une grassmanienne. Ensuite, nous démontrons que est homotopiquement équivalent à l’espace des systèmes linéaires accessibles. En appliquant ces résultats topologiques, on peut prouver qu’il n’existe pas de paramétrisation continue...
Ján Andres (1987)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Azzouz Awane, Mohamed Belam, Sadik Fikri, Mohammed Lahmouz, Bouchra Naanani (2002)
Revista Matemática Complutense
We study some properties of the k-symplectic Hamiltonian systems in analogy with the well-known classical Hamiltonian systems. The integrability of k-symplectic Hamiltonian systems and the relationships with the Nambu's statistical mechanics are given.
J.-P. Françoise (1991)
Mémoires de la Société Mathématique de France
W.W. Symes (1980)
Inventiones mathematicae
Page 1