Page 1 Next

Displaying 1 – 20 of 64

Showing per page

On a deformed version of the two-disk dynamo system

Cristian Lăzureanu, Camelia Petrişor, Ciprian Hedrea (2021)

Applications of Mathematics

We give some deformations of the Rikitake two-disk dynamo system. Particularly, we consider an integrable deformation of an integrable version of the Rikitake system. The deformed system is a three-dimensional Hamilton-Poisson system. We present two Lie-Poisson structures and also symplectic realizations. Furthermore, we give a prequantization result of one of the Poisson manifold. We study the stability of the equilibrium states and we prove the existence of periodic orbits. We analyze some properties...

On a Differential Equation with Left and Right Fractional Derivatives

Atanackovic, Teodor, Stankovic, Bogoljub (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations of fractional order...

On Carnot's theorem in time dependent impulsive mechanics.

Stefano Pasquero (2005)

Extracta Mathematicae

We show that the validity of the Carnot's theorem about the kinetic energy balance for a mechanical system subject to an inert impulsive kinetic constraint, once correctly framed in the time dependent geometric environment for Impulsive Mechanics given by the left and right jet bundles of the space-time bundle N, is strictly related to the frame of reference used to describe the system and then it is not an intrinsic property of the mechanical system itself. We analyze in details the class of frames...

On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

See Summary in Note I. First, on the basis of some results in [2] or [5]-such as Lemmas 8.1 and 10.1-the general (mathematical) theorems on controllizability proved in Note I are quickly applied to (mechanic) Lagrangian systems. Second, in case Σ , χ and M satisfy conditions (11.7) when 𝒬 is a polynomial in γ ˙ , conditions (C)-i.e. (11.8) and (11.7) with 𝒬 0 -are proved to be necessary for treating satisfactorily Σ 's hyper-impulsive motions (in which positions can suffer first order discontinuities)....

On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions for these. III. Strengthening of the characterizations performed in parts I and II, for Lagrangian systems. An invariance property.

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In [1] I and II various equivalence theorems are proved; e.g. an ODE ( ) z ˙ = F ( t , z , u , u ˙ ) ( m ) with a scalar control u = u ( ) is linear w.r.t. u ˙ iff ( α ) its solution z ( u , ) with given initial conditions (chosen arbitrarily) is continuous w.r.t. u in a certain sense, or iff ( β ) z

On D’Alembert’s Principle

Larry M. Bates, James M. Nester (2011)

Communications in Mathematics

A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory.

On implicit Lagrangian differential systems

S. Janeczko (2000)

Annales Polonici Mathematici

Let (P,ω) be a symplectic manifold. We find an integrability condition for an implicit differential system D' which is formed by a Lagrangian submanifold in the canonical symplectic tangent bundle (TP,ὡ).

On Lagrangian systems with some coordinates as controls

Franco Rampazzo (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let Σ be a constrained mechanical system locally referred to state coordinates ( q 1 , , q N , γ 1 , , γ M ) . Let ( γ ~ 1 γ ~ M ) ( ) be an assigned trajectory for the coordinates γ α and let u ( ) be a scalar function of the time, to be thought as a control. In [4] one considers the control system Σ γ ^ , which is parametrized by the coordinates ( q 1 , , q N ) and is obtained from Σ by adding the time-dependent, holonomic constraints γ α = γ ^ α ( t ) := γ ~ α ( u ( t ) ) . More generally, one can consider a vector-valued control u ( ) = ( u 1 , , u M ) ( ) which is directly identified with γ ^ ( ) = ( γ ^ 1 , , γ ^ M ) ( ) . If one denotes the momenta conjugate...

On Liouville forms

Paulette Libermann (2000)

Banach Center Publications

We give different notions of Liouville forms, generalized Liouville forms and vertical Liouville forms with respect to a locally trivial fibration π:E → M. These notions are linked with those of semi-basic forms and vertical forms. We study the infinitesimal automorphisms of these forms; we also investigate the relations with momentum maps.

On motions with bursting characters for Lagrangian mechanical systems with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems

Aldo Bressan, Marco Favretti (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Note is the continuation of a previous paper with the same title. Here (Part II) we show that for every choice of the sequence u a ( ) , Σ a 's trajectory l a after the instant d + η a tends in a certain natural sense, as a , to a certain geodesic l of V d , with origin at q ¯ , u ¯ . Incidentally l is independent of the choice of applied forces in a neighbourhood of q ¯ , u ¯ arbitrarily prefixed.

Currently displaying 1 – 20 of 64

Page 1 Next