Displaying 21 – 40 of 57

Showing per page

Phase field model for mode III crack growth in two dimensional elasticity

Takeshi Takaishi, Masato Kimura (2009)

Kybernetika

A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter ϵ > 0 and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.

Pointwise and spectral control of plate vibrations.

Alain Haraux, Stéphane Jaffard (1991)

Revista Matemática Iberoamericana

We consider the problem of controlling pointwise (by means of a time dependent Dirac measure supported by a given point) the motion of a vibrating plate Ω. Under general boundary conditions, including the special cases of simply supported or clamped plates, but of course excluding the cases where multiple eigenvalues exist for the biharmonic operator, we show the controlability of finite linear combinations of the eigenfunctions at any point of Ω where no eigenfunction vanishes at any time greater...

Positive solutions to a class of elastic beam equations with semipositone nonlinearity

Qingliu Yao (2010)

Annales Polonici Mathematici

Let h ∈ L¹[0,1] ∩ C(0,1) be nonnegative and f(t,u,v) + h(t) ≥ 0. We study the existence and multiplicity of positive solutions for the nonlinear fourth-order two-point boundary value problem u ( 4 ) ( t ) = f ( t , u ( t ) , u ' ( t ) ) , 0 < t < 1, u(0) = u’(0) = u’(1) =u”’(1) =0, where the nonlinear term f(t,u,v) may be singular at t=0 and t=1. By constructing a suitable cone and integrating certain height functions of f(t,u,v) on some bounded sets, several new results are obtained. In mechanics, the problem models the deflection of...

Post-buckling range of plates in axial compression with uncertain initial geometric imperfections

Ivan Hlaváček (2002)

Applications of Mathematics

The method of reliable solutions alias the worst scenario method is applied to the problem of von Kármán equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.

Currently displaying 21 – 40 of 57