Dynamic contact problems with given friction for viscoelastic bodies
The dynamic evolution with frictional contact of a viscoelastic body is considered. The assumptions on the functions used in modelling the contact are broad enough to include both the normal compliance and the Tresca models. The friction law uses a friction coefficient which is a non-monotone function of the slip. The existence and uniqueness of the solution are proved in the general three-dimensional case.
We consider dynamic problems which describe frictional contact between a body and a foundation. The constitutive law is viscoelastic or elastic and the frictional contact is modelled by a general subdifferential condition on the velocity, including the normal damped responses. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of second-order evolution variational inequalities. We show that the solutions of the viscoelastic problems...
Sources of dynamic damping may be various. Mostly, the damping is implemented into calculations in a form of introduction of damping forces, as a product of the velocity vector and the damping matrix in an equation of motion. In practice, the damping matrix is usually assumed to be a linear combination of the mass matrix and the stiffness matrix (so called Rayleigh’s damping). This kind of damping primarily assumes the external environment viscosity as the source of damping, even though the part...
In this paper, we study the dynamic frictional contact of a viscoelastic beam with a deformable obstacle. The beam is assumed to be situated horizontally and to move, in both horizontal and tangential directions, by the effect of applied forces. The left end of the beam is clamped and the right one is free. Its horizontal displacement is constrained because of the presence of a deformable obstacle, the so-called foundation, which is modelled by a normal compliance contact condition. The effect...
We give sufficient conditions which allow the study of the exponential stability of systems closely related to the linear thermoelasticity systems by a decoupling technique. Our approach is based on the multipliers technique and our result generalizes (from the exponential stability point of view) the earlier one obtained by Henry et al.
In the paper, time-periodic solutions to dynamic von Kármán equations are investigated. Assuming that there is a damping term in the equations we are able to show the existence of at least one solution to the problem. The Faedo-Galerkin method is used together with some basic ideas concerning monotone operators on Orlicz spaces.
This paper discusses the existence theory to dynamical model of viscoplasticity and show possibility to obtain existence of solution without assuming weak safe-load condition.
We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow:...