Existence of the Displacements Field for an Elasto-Plastic Body Subject to Hencky's Law and von Mises Yield Condition.
We consider a two dimensional elastic body submitted to unilateral contact conditions, local friction and adhesion on a part of his boundary. After discretizing the variational formulation with respect to time we use a smoothing technique to approximate the friction term by an auxiliary problem. A shifting technique enables us to obtain the existence of incremental solutions with bounds independent of the regularization parameter. We finally obtain the existence of a quasistatic solution...
In this paper we give an existence theorem for the equilibrium problem for nonlinear micropolar elastic body. We consider the problem in its minimization formulation and apply the direct methods of the calculus of variations. As the main step towards the existence theorem, under some conditions, we prove the equivalence of the sequential weak lower semicontinuity of the total energy and the quasiconvexity, in some variables, of the stored energy function.
In the last decade the dramatic onset of multicore and multi-processor systems in combination with the possibilities which now provide modern computer networks have risen. The complexity and size of the investigated models are constantly increasing due to the high computational complexity of computational tasks in dynamics and statics of structures, mainly because of the nonlinear character of the solved models. Any possibility to speed up such calculation procedures is more than desirable. This...
We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.
We performe an exponential decay analysis for a Timoshenko-type system under the thermal effect by constructing the Lyapunov functional. More precisely, this thermal effect is acting as a mechanism for dissipating energy generated by the bending of the beam, acting only on the vertical displacement equation, different from other works already existing in the literature. Furthermore, we show the good placement of the problem using semigroup theory.
In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.
We exploit a recent proposal of an «extended kinematics» to describe fast flows of granular materials. Prompted by some remarks in elementary point dynamics, we suggest balance laws which might be of use in studying the evolution of those flows.