Displaying 121 – 140 of 207

Showing per page

On an elasto-dynamic evolution equation with non dead load and friction

Oanh Chau (2006)

Applications of Mathematics

In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.

On semiconvexity properties of rotationally invariant functions in two dimensions

Miroslav Šilhavý (2004)

Czechoslovak Mathematical Journal

Let f be a function defined on the set 𝐌 2 × 2 of all 2 by 2 matrices that is invariant with respect to left and right multiplications of its argument by proper orthogonal matrices. The function f can be represented as a function f ˜ of the signed singular values of its matrix argument. The paper expresses the ordinary convexity, polyconvexity, and rank 1 convexity of f in terms of its representation f ˜ .

On the nonlinear behaviour of bimodular multilayer ed plates.

Giacinto Porco, Giuseppe Spandea, Raffaele Zinno (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In an earlier study [16] the nonlinear behaviour of unimodular laminated plates was studied. This paper, following the previous study, concerns a large deflection analysis of moderately thick rectangular plates having arbitrary boundary conditions and finite thickness shear moduli. The plates are manufactured in bimodular materials and constructed in a cross-ply fashion or in a single layer with arbitrary fibre direction angle. Numerical results are obtained by a finite element technique in which...

On the numerical modeling of deformations of pressurized martensitic thin films

Pavel Bělík, Timothy Brule, Mitchell Luskin (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

On the Numerical Modeling of Deformations of Pressurized Martensitic Thin Films

Pavel Bělík, Timothy Brule, Mitchell Luskin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

On the solution of a generalized system of von Kármán equations

Jozef Kačur (1981)

Aplikace matematiky

A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.

Ondes de surface faiblement non-linéaires

Sylvie Benzoni-Gavage, Jean-François Coulombel, Nikolay Tzvetkov (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

Cet exposé concerne l’approximation faiblement non-linéaire de problèmes aux limites invariants par changement d’échelles.

Phase field model for mode III crack growth in two dimensional elasticity

Takeshi Takaishi, Masato Kimura (2009)

Kybernetika

A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regularization parameter ϵ > 0 and we approximate the Francfort–Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.

Currently displaying 121 – 140 of 207