Displaying 281 – 300 of 519

Showing per page

On a transmission problem in elasticity

Christodoulos Athanasiadis, Ioannis G. Stratis (1998)

Annales Polonici Mathematici

The transmission problem for the reduced Navier equation of classical elasticity, for an infinitely stratified scatterer, is studied. The existence and uniqueness of solutions is proved. Moreover, an integral representation of the solution is constructed, for both the near and the far field.

On an elasto-dynamic evolution equation with non dead load and friction

Oanh Chau (2006)

Applications of Mathematics

In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.

On an interaction of two elastic bodies: analysis and algorithms

Ivona Svobodová (2012)

Applications of Mathematics

The paper deals with existence and uniqueness results and with the numerical solution of the nonsmooth variational problem describing a deflection of a thin annular plate with Neumann boundary conditions. Various types of the subsoil and the obstacle which influence the plate deformation are considered. Numerical experiments compare two different algorithms.

On asymptotics of solutions and eigenvalues of the boundary value problem with rapidly alternating boundary conditions for the system of elasticity

Olga A. Oleinik, Gregory Chechkin (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Boundary value problems for the system of linear elasticity with rapidly alternating boundary conditions are studied and asymptotic behavior of solutions is considered when a small parameter, which defines the oscillation of the boundary conditions, tends to zero. Estimates for the difference between such solutions and solutions of the limit problem are given.

On general boundary value problems and duality in linear elasticity. II

Rolf Hünlich, Joachim Naumann (1980)

Aplikace matematiky

The present part of the paper completes the discussion in Part I in two directions. Firstly, in Section 5 a number of existence theorems for a solution to Problem III (principle of minimum potential energy) is established. Secondly, Section 6 and 7 are devoted to a discussion of both the classical and the abstract approach to the duality theory as well as the relationship between the solvability of Problem III and its dual one.

On general boundary value problems and duality in linear elasticity. I

Rolf Hünlich, Joachim Naumann (1978)

Aplikace matematiky

The equilibrium state of a deformable body under the action of body forces is described by the well known conditions of equilibrium, the straindisplacement relations, the constitutive law of the linear theory and the boundary conditions. The authors discuss in detail the boundary conditions. The starting point is the general relation between the vectors of stress and displacement on the boundary which can be expressed in terms of a subgradient relation. It is shown that this relation includes as...

On Ishlinskij's model for non-perfectly elastic bodies

Pavel Krejčí (1988)

Aplikace matematiky

The main goal of the paper is to formulate some new properties of the Ishlinskii hysteresis operator F , which characterizes e.g. the relation between the deformation and the stress in a non-perfectly elastic (elastico-plastic) material. We introduce two energy functionals and derive the energy inequalities. As an example we investigate the equation u ' ' + F ( u ) = 0 describing the motion of a mass point at the extremity of an elastico-plastic spring.

On numerical solution of weight minimization of elastic bodies weakly supporting tension

Petr Kočandrle, Petr Rybníček (1995)

Applications of Mathematics

Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its weight and to the hydrostatic pressure. A part of the boundary has to be found so as to minimize a given cost functional. The numerical realization using a penalty method and finite element technique is presented. Some typical results are shown.

On semiconvexity properties of rotationally invariant functions in two dimensions

Miroslav Šilhavý (2004)

Czechoslovak Mathematical Journal

Let f be a function defined on the set 𝐌 2 × 2 of all 2 by 2 matrices that is invariant with respect to left and right multiplications of its argument by proper orthogonal matrices. The function f can be represented as a function f ˜ of the signed singular values of its matrix argument. The paper expresses the ordinary convexity, polyconvexity, and rank 1 convexity of f in terms of its representation f ˜ .

Currently displaying 281 – 300 of 519