Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity
We study the existence of a solution to the nonlinear fourth-order elastic beam equation with nonhomogeneous boundary conditions where the nonlinear term is a strong Carathéodory function. By constructing suitable height functions of the nonlinear term on bounded sets and applying the Leray-Schauder fixed point theorem, we prove that the equation has a solution provided that the integration of some height function has an appropriate value.