Displaying 81 – 100 of 166

Showing per page

On the quasiconvex exposed points

Kewei Zhang (2001)

ESAIM: Control, Optimisation and Calculus of Variations

The notion of quasiconvex exposed points is introduced for compact sets of matrices, motivated from the variational approach to material microstructures. We apply the notion to give geometric descriptions of the quasiconvex extreme points for a compact set. A weak version of Straszewicz type density theorem in convex analysis is established for quasiconvex extreme points. Some examples are examined by using known explicit quasiconvex functions.

On the quasiconvex exposed points

Kewei Zhang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The notion of quasiconvex exposed points is introduced for compact sets of matrices, motivated from the variational approach to material microstructures. We apply the notion to give geometric descriptions of the quasiconvex extreme points for a compact set. A weak version of Straszewicz type density theorem in convex analysis is established for quasiconvex extreme points. Some examples are examined by using known explicit quasiconvex functions.

On the Representation of Effective Energy Densities

Christopher J. Larsen (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the question raised in [1] of whether relaxed energy densities involving both bulk and surface energies can be written as a sum of two functions, one depending on the net gradient of admissible functions, and the other on net singular part. We show that, in general, they cannot. In particular, if the bulk density is quasiconvex but not convex, there exists a convex and homogeneous of degree 1 function of the jump such that there is no such representation.

Optimal control of variational inequality with applications to axisymmetric shells

Ján Lovíšek (1987)

Aplikace matematiky

The optimal control problem of variational inequality with applications to axisymmetric shells is discussed. First an existence result for the solution of the optimal control problem is given. Next is presented the formulation of first order necessary conditionas of optimality for the control problem governed by a variational inequality with its coefficients as control variables.

Optimal design of an elastic beam on an elastic basis

Jan Chleboun (1986)

Aplikace matematiky

An elastic simply supported beam of given volume and of constant width and length, fixed on an elastic base, is considered. The design variable is taken to be the thickness of the beam; its derivatives of the first order are bounded both above and below. The load consists of concentrated forces and moments, the weight of the beam and of the so called continuous load. The cost functional is either the H 2 -norm of the deflection curve or the L 2 -norm of the normal stress in the extemr fibre of the beam. Existence...

Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem

Roman Šimeček (2013)

Applications of Mathematics

A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of...

Optimal design of cylindrical shell with a rigid obstacle

Ján Lovíšek (1989)

Aplikace matematiky

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form are inequalities expressing the principle of virtual power in its inequality form. We consider an optimal control problem in whixh the state of the system (involving an elliptic, linear symmetric operator, the coefficients of which are chosen as the design - control variables) is defined as the (unique) solution of stationary variational inequalities. The existence result proved in Section 1...

Optimal design of turbines with an attached mass

Boris P. Belinskiy, C. Maeve McCarthy, Terry J. Walters (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.

Optimal design of turbines with an attached mass

Boris P. Belinskiy, C. Maeve McCarthy, Terry J. Walters (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We minimize, with respect to shape, the moment of inertia of a turbine having the given lowest eigenfrequency of the torsional oscillations. The necessary conditions of optimality in conjunction with certain physical parameters admit a unique optimal design.

Optimization of the shape of axisymmetric shells

Ivan Hlaváček (1983)

Aplikace matematiky

Axisymmetric thin elastic shells of constant thickness are considered and the meridian curves of their middle surfaces taken for the design variable. Admissible functions are smooth curves of a given length, which are uniformly bounded together with their first and second derivatives, and such that the shell contains a given volume. The loading consists of the hydrostatic pressure of a liquid, the shell's own weight and the internal or external pressure. As the cost functional, the integral of the...

Optimum composite material design

Jaroslav Haslinger, Jan Dvořák (1995)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Relating phase field and sharp interface approaches to structural topology optimization

Luise Blank, Harald Garcke, M. Hassan Farshbaf-Shaker, Vanessa Styles (2014)

ESAIM: Control, Optimisation and Calculus of Variations

A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for...

Relaxation of vectorial variational problems

Tomáš Roubíček (1995)

Mathematica Bohemica

Multidimensional vectorial non-quasiconvex variational problems are relaxed by means of a generalized-Young-functional technique. Selective first-order optimality conditions, having the form of an Euler-Weiestrass condition involving minors, are formulated in a special, rather a model case when the potential has a polyconvex quasiconvexification.

Reliable solution of an elasto-plastic Reissner-Mindlin beam for Hencky's model with uncertain yield function

Ivan Hlaváček (1998)

Applications of Mathematics

We apply the method of reliable solutions to the bending problem for an elasto-plastic beam, considering the yield function of the von Mises type with uncertain coefficients. The compatibility method is used to find the moments and shear forces. Then we solve a maximization problem for these quantities with respect to the uncertain input data.

Removing holes in topological shape optimization

Maatoug Hassine, Philippe Guillaume (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical examples...

Currently displaying 81 – 100 of 166