Approximation of a Bending Plate Problem With a Boundary Unilateral Constraint.
We give results for the approximation of a laminate with varying volume fractions for multi-well energy minimization problems modeling martensitic crystals that can undergo either an orthorhombic to monoclinic or a cubic to tetragonal transformation. We construct energy minimizing sequences of deformations which satisfy the corresponding boundary condition, and we establish a series of error bounds in terms of the elastic energy for the approximation of the limiting macroscopic deformation and...
We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.
We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.
We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling is...
We analyze an isoparametric finite element method to compute the vibration modes of a plate, modeled by Reissner-Mindlin equations, in contact with a compressible fluid, described in terms of displacement variables. To avoid locking in the plate, we consider a low-order method of the so called MITC (Mixed Interpolation of Tensorial Component) family on quadrilateral meshes. To avoid spurious modes in the fluid, we use a low-order hexahedral Raviart-Thomas elements and a non conforming coupling...