Previous Page 2

Displaying 21 – 27 of 27

Showing per page

Finite volume schemes for the p-Laplacian on Cartesian meshes

Boris Andreianov, Franck Boyer, Florence Hubert (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the finite volume approximation of the p-Laplacian equation with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm of the gradient on the mesh's interfaces is needed in order to discretize the p-Laplacian operator. We give a detailed description of the possible nine points schemes ensuring that the solution of the resulting finite dimensional nonlinear system exists and is unique. These schemes, called admissible, are locally...

Free energy and internal variables in linear viscoelasticity

Angelo Morro, Maurizio Vianello (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In connection with the determination of the free energy functional for the viscoelastic stress tensor, a viscoelastic material is considered as described by a material with internal variables. In this framework the free energy is uniquely determined. It proves to be the minimal one in the class of thermodynamically admissible free energies.

Functional a posteriori error estimates for incremental models in elasto-plasticity

Sergey Repin, Jan Valdman (2009)

Open Mathematics

We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants...

Currently displaying 21 – 27 of 27

Previous Page 2