Previous Page 2

Displaying 21 – 34 of 34

Showing per page

The treatment of “pinching locking” in 3 D -shell elements

Dominique Chapelle, Anca Ferent, Patrick Le Tallec (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a family of shell finite elements with quadratic displacements across the thickness. These elements are very attractive, but compared to standard general shell elements they face another source of numerical locking in addition to shear and membrane locking. This additional locking phenomenon – that we call “pinching locking” – is the subject of this paper and we analyse a numerical strategy designed to overcome this difficulty. Using a model problem in which only this specific source...

The treatment of “pinching locking” in 3D-shell elements

Dominique Chapelle, Anca Ferent, Patrick Le Tallec (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a family of shell finite elements with quadratic displacements across the thickness. These elements are very attractive, but compared to standard general shell elements they face another source of numerical locking in addition to shear and membrane locking. This additional locking phenomenon – that we call “pinching locking” – is the subject of this paper and we analyse a numerical strategy designed to overcome this difficulty. Using a model problem in which only this specific source of...

The unbonded contact problem of a rectangular plate resting on an elastic foundation

Luigi Ascione, Renato S. Olivito, Giuseppe Spadea (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro viene analizzato il problema di equilibrio statico di una piastra rettangolare in contatto unilaterale e senza attrito con un mezzo elastico. Si esaminano i due modelli di fondazione alla Winkler e di semispazio elastico. Il problema viene risolto mediante discretizzazione agli elementi finiti utilizzando un approccio di tipo «penalty». La rapida convergenza del metodo e la sua efficienza sono dimostrate dagli esempi studiati, che riguardano sia piastre quadrate che rettangolari...

Theoretical analysis of discrete contact problems with Coulomb friction

Tomáš Ligurský (2012)

Applications of Mathematics

A discrete model of the two-dimensional Signorini problem with Coulomb friction and a coefficient of friction depending on the spatial variable is analysed. It is shown that a solution exists for any and is globally unique if is sufficiently small. The Lipschitz continuity of this unique solution as a function of as well as a function of the load vector f is obtained. Furthermore, local uniqueness of solutions for arbitrary > 0 is studied. The question of existence of locally Lipschitz-continuous...

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful successive...

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion*

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful...

Thick obstacle problems with dynamic adhesive contact

Jeongho Ahn (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider dynamic frictionless contact with adhesion between a viscoelastic body of the Kelvin-Voigt type and a stationary rigid obstacle, based on the Signorini's contact conditions. Including the adhesion processes modeled by the bonding field, a new version of energy function is defined. We use the energy function to derive a new form of energy balance which is supported by numerical results. Employing the time-discretization, we establish a numerical formulation and investigate...

Two-sided bounds of eigenvalues of second- and fourth-order elliptic operators

Andrey Andreev, Milena Racheva (2014)

Applications of Mathematics

This article presents an idea in the finite element methods (FEMs) for obtaining two-sided bounds of exact eigenvalues. This approach is based on the combination of nonconforming methods giving lower bounds of the eigenvalues and a postprocessing technique using conforming finite elements. Our results hold for the second and fourth-order problems defined on two-dimensional domains. First, we list analytic and experimental results concerning triangular and rectangular nonconforming elements which...

Currently displaying 21 – 34 of 34

Previous Page 2