The equilibrium configuration of liquid drops.
We investigate the inviscid limit for the stationary Navier-Stokes equations in a two dimensional bounded domain with slip boundary conditions admitting nontrivial inflow across the boundary. We analyze admissible regularity of the boundary necessary to obtain convergence to a solution of the Euler system. The main result says that the boundary of the domain must be at least C²-piecewise smooth with possible interior angles between regular components less than π.
We consider the magneto-micropolar fluid flow in a bounded domain Ω ⊂ ℝ². The flow is modelled by a system of PDEs, a generalisation of the two-dimensional Navier-Stokes equations. Using the Galerkin method we prove the existence and uniqueness of weak solutions and then using the ℓ-trajectories method we prove the existence of the exponential attractor in the dynamical system associated with the model.
We present a method for the construction of artificial far-field boundary conditions for two- and three-dimensional exterior compressible viscous flows in aerodynamics. Since at some distance to the surrounded body (e.g. aeroplane, wing section, etc.) the convective forces are strongly dominant over the viscous ones, the viscosity effects are neglected there and the flow is assumed to be inviscid. Accordingly, we consider two different model zones leading to a decomposition of the original flow...
We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later,...