Displaying 81 – 100 of 139

Showing per page

One-dimensional problem for heat and mass transport in oil-wax solution

Roberto Gianni, Anna G. Petrova (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A mathematical model of heat and mass transport in non-isothermal partially saturated oil-wax solution was formulated by A. Fasano and M. Primicerio [1]. This paper is devoted to the study of a one-dimensional problem in the framework of that model. The existence of classical solutions in a small time interval is proved, based on the application of a fixed-point theorem to the constructed operator. The technique employed is close to the one of [3] and [4].

Path following methods for steady laminar Bingham flow in cylindrical pipes

Juan Carlos De Los Reyes, Sergio González (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties...

Path following methods for steady laminar Bingham flow in cylindrical pipes

Juan Carlos De Los Reyes, Sergio González (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties...

Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis

Miroslav Bulíček, Oldřich Ulrych (2011)

Applications of Mathematics

We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called L -truncation method, used to obtain the strong convergence of the velocity...

Shear flows of a new class of power-law fluids

Christiaan Le Roux, Kumbakonam R. Rajagopal (2013)

Applications of Mathematics

We consider the flow of a class of incompressible fluids which are constitutively defined by the symmetric part of the velocity gradient being a function, which can be non-monotone, of the deviator of the stress tensor. These models are generalizations of the stress power-law models introduced and studied by J. Málek, V. Průša, K. R. Rajagopal: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907–1924. We discuss a potential application of the new...

Start-up of channel-flow of a Bingham fluid initially at rest

Irene Daprà, Giambattista Scarpi (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We present an analytical solution of plane motion for a Bingham fluid initially at rest subjected to a suddenly applied constant pressure gradient. Using the Laplace transform we obtain expressions which allow a direct easy calculation of the velocity, of the plug thickness and of the rate of flow as function of time.

Steady-state buoyancy-driven viscous flow with measure data

Tomáš Roubíček (2001)

Mathematica Bohemica

Steady-state system of equations for incompressible, possibly non-Newtonean of the p -power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain Ω n , n = 2 or 3, with heat sources allowed to have a natural L 1 -structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if p > 3 / 2 (for n = 2 ) or if p > 9 / 5 (for n = 3 ).

Currently displaying 81 – 100 of 139