Displaying 201 – 220 of 478

Showing per page

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations16 (2003) 1039–1064; Pego and Quintero, Physica D132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical evidence of nonuniqueness in the evolution of vortex sheets

Milton C. Lopes Filho, John Lowengrub, Helena J. Nussenzveig Lopes, Yuxi Zheng (2006)

ESAIM: Mathematical Modelling and Numerical Analysis


We consider a special configuration of vorticity that consists of a pair of externally tangent circular vortex sheets, each having a circularly symmetric core of bounded vorticity concentric to the sheet, and each core precisely balancing the vorticity mass of the sheet. This configuration is a stationary weak solution of the 2D incompressible Euler equations. We propose to perform numerical experiments to verify that certain approximations of this flow configuration converge to a non-stationary...

Numerical simulations of wave breaking

Philippe Helluy, Frédéric Golay, Jean-Paul Caltagirone, Pierre Lubin, Stéphane Vincent, Deborah Drevard, Richard Marcer, Philippe Fraunié, Nicolas Seguin, Stephan Grilli, Anne-Cécile Lesage, Alain Dervieux, Olivier Allain (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments.

Numerical simulations of wave breaking

Philippe Helluy, Frédéric Golay, Jean-Paul Caltagirone, Pierre Lubin, Stéphane Vincent, Deborah Drevard, Richard Marcer, Philippe Fraunié, Nicolas Seguin, Stephan Grilli, Anne-Cécile Lesage, Alain Dervieux, Olivier Allain (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments.

Numerical study of the Davey-Stewartson system

Christophe Besse, Norbert J. Mauser, Hans Peter Stimming (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...

Numerical study of the Davey-Stewartson system

Christophe Besse, Norbert J. Mauser, Hans Peter Stimming (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...

Currently displaying 201 – 220 of 478