On the Euler equations with a singular external velocity field
The Muskat problem models the dynamics of the interface between two incompressible immiscible fluids with different constant densities. In this work we prove three results. First we prove an maximum principle, in the form of a new “log” conservation law which is satisfied by the equation (1) for the interface. Our second result is a proof of global existence for unique strong solutions if the initial data is smaller than an explicitly computable constant, for instance . Previous results of this...
In this paper we prove the global well-posedness of the two-dimensional Boussinesq system with zero viscosity for rough initial data.
In the existing stability theory of steady flows of an ideal incompressible fluid, formulated by V. Arnold, the stability is understood as a stability with respect to perturbations with small in vorticity. Nothing has been known about the stability under perturbation with small energy, without any restrictions on vorticity; it was clear that existing methods do not work for this (the most physically reasonable) class of perturbations. We prove that in fact, every nontrivial steady flow is unstable...
Studiamo l'evoluzione temporale di un fluido bidimensionale incomprimibile non viscoso quando la vorticità iniziale è concentrata in regioni di diametro e mostriamo che la vorticità evoluta temporalmente è anche lei concentrata in piccole regioni di diametro , per qualunque . Noi chiamiamo questa proprietà "localizzazione". Come conseguenza abbiamo una connessione rigorosa tra il modello dei vortici puntiformi e l'Equazione di Eulero.
We propose a weak formulation for the binormal curvature flow of curves in . This formulation is sufficiently broad to consider integral currents as initial data, and sufficiently strong for the weak-strong uniqueness property to hold, as long as self-intersections do not occur. We also prove a global existence theorem in that framework.