Displaying 161 – 180 of 223

Showing per page

Problème de Stokes et système de Navier-Stokes incompressible à densité variable dans le demi-espace

Raphaël Danchin, Piotr Bogusław Mucha (2008/2009)

Séminaire Équations aux dérivées partielles

On s’intéresse à la résolution du système de Navier-Stokes incompressible à densité variable dans le demi-espace + n : = n - 1 × ] 0 , [ en dimension n 3 . On considère des données initiales à régularité critique. On établit que si la densité initiale est proche d’une constante strictement positive dans L W ˙ 1 , n et si la vitesse initiale est petite par rapport à la viscosité dans l’espace de Besov homogène B ˙ n , 1 0 alors le système de Navier-Stokes admet une unique solution globale. La démonstration repose sur de nouvelles estimations...

Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity

Alexis Vasseur (2009)

Applications of Mathematics

In this short note we give a link between the regularity of the solution u to the 3D Navier-Stokes equation and the behavior of the direction of the velocity u / | u | . It is shown that the control of Div ( u / | u | ) in a suitable L t p ( L x q ) norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin and Fefferman. However, in this case the condition is not on the vorticity but on the velocity itself. The proof, based on very...

Remark on regularity of weak solutions to the Navier-Stokes equations

Zdeněk Skalák, Petr Kučera (2001)

Commentationes Mathematicae Universitatis Carolinae

Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space L 2 ( 0 , T , W 1 , 3 ( 𝛺 ) 3 ) are regular.

Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data

Zujin Zhang (2016)

Annales Polonici Mathematici

We consider the axisymmetric Navier-Stokes equations with non-zero swirl component. By invoking the Hardy-Sobolev interpolation inequality, Hardy inequality and the theory of * A β (1 < β < ∞) weights, we establish regularity criteria involving u r , ω z or ω θ in some weighted Lebesgue spaces. This improves many previous results.

Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations

Zujin Zhang, Chenxuan Tong (2022)

Applications of Mathematics

We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that | ω r ( x , t ) | + | ω z ( r , t ) | C r 10 , 0 < r 1 2 . By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing ω r , ω z and ω θ / r on different hollow cylinders, we are able to improve it and obtain | ω r ( x , t ) | + | ω z ( r , t ) | C | ln r | r 17 / 2 , 0 < r 1 2 .

Currently displaying 161 – 180 of 223