Previous Page 2

Displaying 21 – 37 of 37

Showing per page

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault, Jacques-Louis Lions (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H . In the second step, the problem is linearized by substituting into the non-linear term, the velocity 𝐮 H computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h . This approach is motivated by the fact that,...

Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault, Jacques-Louis Lions (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H. In the second step, the problem is linearized by substituting into the non-linear term, the velocity uH computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h. This approach is motivated by the fact that,...

Two-Layer Flow with One Viscous Layer in Inclined Channels

O. K. Matar, G. M. Sisoev, C. J. Lawrence (2008)

Mathematical Modelling of Natural Phenomena

We study pressure-driven, two-layer flow in inclined channels with high density and viscosity contrasts. We use a combination of asymptotic reduction, boundary-layer theory and the Karman-Polhausen approximation to derive evolution equations that describe the interfacial dynamics. Two distinguished limits are considered: where the viscosity ratio is small with density ratios of order unity, and where both density and viscosity ratios are small. The evolution equations account for the presence of...

Two-level stabilized nonconforming finite element method for the Stokes equations

Haiyan Su, Pengzhan Huang, Xinlong Feng (2013)

Applications of Mathematics

In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the N C P 1 - P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized Stokes...

Currently displaying 21 – 37 of 37

Previous Page 2