Page 1 Next

Displaying 1 – 20 of 37

Showing per page

Enabling numerical accuracy of Navier-Stokes-α through deconvolution and enhanced stability

Carolina C. Manica, Monika Neda, Maxim Olshanskii, Leo G. Rebholz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and analyze a finite element method for approximating solutions to the Navier-Stokes-alpha model (NS-α) that utilizes approximate deconvolution and a modified grad-div stabilization and greatly improves accuracy in simulations. Standard finite element schemes for NS-α suffer from two major sources of error if their solutions are considered approximations to true fluid flow: (1) the consistency error arising from filtering; and (2) the dramatic effect of the large pressure error on the...

Enabling numerical accuracy of Navier-Stokes-α through deconvolution and enhanced stability*

Carolina C. Manica, Monika Neda, Maxim Olshanskii, Leo G. Rebholz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze a finite element method for approximating solutions to the Navier-Stokes-alpha model (NS-α) that utilizes approximate deconvolution and a modified grad-div stabilization and greatly improves accuracy in simulations. Standard finite element schemes for NS-α suffer from two major sources of error if their solutions are considered approximations to true fluid flow: (1) the consistency error arising from filtering; and (2) the dramatic effect of the large pressure error on the...

Équation anisotrope de Navier-Stokes dans des espaces critiques.

Marius Paicu (2005)

Revista Matemática Iberoamericana

We study the tridimensional Navier-Stokes equation when the value of the vertical viscosity is zero, in a critical space (invariant by the scaling). We shall prove local in time existence of the solution, respectively global in time when the initial data is small compared with the horizontal viscosity.

Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt A p -weighted L p -spaces

Ryôhei Kakizawa (2018)

Czechoslovak Mathematical Journal

We discuss the validity of the Helmholtz decomposition of the Muckenhoupt A p -weighted L p -space ( L w p ( Ω ) ) n for any domain Ω in n , n , n 2 , 1 < p < and Muckenhoupt A p -weight w A p . Set p ' : = p / ( p - 1 ) and w ' : = w - 1 / ( p - 1 ) . Then the Helmholtz decomposition of ( L w p ( Ω ) ) n and ( L w ' p ' ( Ω ) ) n and the variational estimate of L w , π p ( Ω ) and L w ' , π p ' ( Ω ) are equivalent. Furthermore, we can replace L w , π p ( Ω ) and L w ' , π p ' ( Ω ) by L w , σ p ( Ω ) and L w ' , σ p ' ( Ω ) , respectively. The proof is based on the reflexivity and orthogonality of L w , π p ( Ω ) and L w , σ p ( Ω ) and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with...

Error of the two-step BDF for the incompressible Navier-Stokes problem

Etienne Emmrich (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional case....

Error of the two-step BDF for the incompressible Navier-Stokes problem

Etienne Emmrich (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The incompressible Navier-Stokes problem is discretized in time by the two-step backward differentiation formula. Error estimates are proved under feasible assumptions on the regularity of the exact solution avoiding hardly fulfillable compatibility conditions. Whereas the time-weighted velocity error is of optimal second order, the time-weighted error in the pressure is of first order. Suboptimal estimates are shown for a linearisation. The results cover both the two- and three-dimensional...

Estimates based on scale separation for geophysical flows.

François Jauberteau, Roger Temam (2002)

RACSAM

The objective of this work is to obtain theoretical estimates on the large and small scales for geophysical flows. Firstly, we consider the shallow water problem in the one-dimensional case, then in the two-dimensional case. Finally we consider geophysical flows under the hydrostatic hypothesis and the Boussinesq approximation. Scale separation is based on Fourier series, with N models in each spatial direction, and the choice of a cut-off level N1 &lt; N to define large and small scales. We...

Currently displaying 1 – 20 of 37

Page 1 Next