Point fixe d'une application non contractante.
We study a multilinear fixed-point equation in a closed ball of a Banach space where the application is 1-Lipschitzian: existence, uniqueness, approximations, regularity.
We study a multilinear fixed-point equation in a closed ball of a Banach space where the application is 1-Lipschitzian: existence, uniqueness, approximations, regularity.
The initial-boundary value problem of two-dimensional incompressible fluid flow in stream function form is considered. A prediction-correction Legendre spectral scheme is proposed, which is easy to be performed. The numerical solution possesses the accuracy of second-order in time and higher order in space. The numerical experiments show the high accuracy of this approach.
On s’intéresse à la résolution du système de Navier-Stokes incompressible à densité variable dans le demi-espace en dimension On considère des données initiales à régularité critique. On établit que si la densité initiale est proche d’une constante strictement positive dans et si la vitesse initiale est petite par rapport à la viscosité dans l’espace de Besov homogène alors le système de Navier-Stokes admet une unique solution globale. La démonstration repose sur de nouvelles estimations...
We consider sequences of solutions of the Navier-Stokes equations in , associated with sequences of initial data bounded in . We prove, in the spirit of the work of H.Bahouri and P.Gérard (in the case of the wave equation), that they can be decomposed into a sum of orthogonal profiles, bounded in , up to a remainder term small in ; the method is based on the proof of a similar result for the heat equation, followed by a perturbation–type argument. If is an “admissible” space (in particular ...
We consider a stochastic system of particles, usually called vortices in that setting, approximating the 2D Navier-Stokes equation written in vorticity. Assuming that the initial distribution of the position and circulation of the vortices has finite (partial) entropy and a finite moment of positive order, we show that the empirical measure of the particle system converges in law to the unique (under suitable a priori estimates) solution of the 2D Navier-Stokes equation. We actually prove a slightly...
We study the 2D magnetohydrodynamic (MHD) equations for a viscous incompressible resistive fluid, a system with the Navier-Stokes equations for the velocity field coupled with a convection-diffusion equation for the magnetic fields, in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality with a large class of non-autonomous external forces. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal...