On the breaking of mirror symmetry in homogeneous isotropic turbulence-helicity effect.
We present regularity conditions for a solution to the 3D Navier-Stokes equations, the 3D Euler equations and the 2D quasigeostrophic equations, considering the vorticity directions together with the vorticity magnitude. It is found that the regularity of the vorticity direction fields is most naturally measured in terms of norms of the Triebel-Lizorkin type.
The LBB condition is well-known to guarantee the stability of a finite element (FE) velocity - pressure pair in incompressible flow calculations. To ensure the condition to be satisfied a certain constant should be positive and mesh-independent. The paper studies the dependence of the LBB condition on the domain geometry. For model domains such as strips and rings the substantial dependence of this constant on geometry aspect ratios is observed. In domains with highly anisotropic substructures...
This paper is devoted to the study of the incompressible Navier-Stokes equations with mass diffusion in a bounded domain in R³ with C³ boundary. We prove the existence of weak solutions, in the large, and the behavior of the solutions as the diffusion parameter λ → 0. Moreover, the existence of L²-strong solution, in the small, and in the large for small data, is proved. Asymptotic regularity (the regularity after a finite period) of a weak solution is studied. Finally, using the Dore-Venni theory,...
In this paper we deal with the stationary Navier-Stokes problem in a domain with compact Lipschitz boundary and datum in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of , with possible countable exceptional set, provided is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for bounded.
On the complement of the unit disk we consider solutions of the equations describing the stationary flow of an incompressible fluid with shear dependent viscosity. We show that the velocity field is equal to zero provided and uniformly. For slow flows the latter condition can be replaced by uniformly. In particular, these results hold for the classical Navier-Stokes case.
In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate...
This paper deals with the global well-posedness of the D axisymmetric Euler equations for initial data lying in critical Besov spaces . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .
We consider the spatial behavior of the velocity field of a fluid filling the whole space () for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions under more general assumptions on the localization of . We also give some new examples of solutions which have a stronger spatial localization than in the generic case.
We consider the spatial behavior of the velocity field u(x, t) of a fluid filling the whole space () for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions under more general assumptions on the localization of u. We also give some new examples of solutions which have a stronger spatial localization than in the generic case.
We establish regularity results up to the boundary for solutions to generalized Stokes and Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means the presence of a shear dependent viscosity. We treat the case . Actually, we are interested in proving regularity results in spaces for all the second order derivatives of the velocity and all the first order derivatives of the pressure. The main aim of the present paper is to extend our previous scheme, introduced...
We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence...
We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.