On the domain geometry dependence of the LBB condition
The LBB condition is well-known to guarantee the stability of a finite element (FE) velocity - pressure pair in incompressible flow calculations. To ensure the condition to be satisfied a certain constant should be positive and mesh-independent. The paper studies the dependence of the LBB condition on the domain geometry. For model domains such as strips and rings the substantial dependence of this constant on geometry aspect ratios is observed. In domains with highly anisotropic substructures...
The existence for the Cauchy-Neumann problem for the Stokes system in a bounded domain is proved in a class such that the velocity belongs to , where r > 3. The proof is divided into three steps. First, the existence of solutions is proved in a half-space for vanishing initial data by applying the Marcinkiewicz multiplier theorem. Next, we prove the existence of weak solutions in a bounded domain and then we regularize them. Finally, the problem with nonvanishing initial data is considered....
We prove the existence of solutions to the evolutionary Stokes system in a bounded domain Ω ⊂ ℝ³. The main result shows that the velocity belongs either to or to with p > 3 and s ∈ ℝ₊ ∪ 0. The proof is divided into two steps. First the existence in for k ∈ ℕ is proved. Next applying interpolation theory the existence in Besov spaces in a half space is shown. Finally the technique of regularizers implies the existence in a bounded domain. The result is generalized to the spaces and with...
In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate...
This article deals with the solvability of the boundary-value problem for the Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in a bounded domain. Such problems arise when steady flows of fluids in domains with rough boundaries are approximated as flows in domains with smooth boundaries. It is proved by means of the Galerkin method that the boundary-value problem has a unique weak solution when the body force and the variability of the surface friction are...
We give the estimate for the Stokes semigroup in a perturbed half-space and some global in time existence theorems for small solutions to the Navier-Stokes equation.
In this paper, we study the nonstationary Stokes equation with Neumann boundary condition in a bounded or an exterior domain in ℝⁿ, which is the linearized model problem of the free boundary value problem. Mainly, we prove estimates for the semigroup of the Stokes operator. Comparing with the non-slip boundary condition case, we have the better decay estimate for the gradient of the semigroup in the exterior domain case because of the null force at the boundary.
We present a numerical simulation of two coupled Navier-Stokes flows, using ope-rator-split-ting and optimization-based non-overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid...
This paper deals with a strongly elliptic perturbation for the Stokes equation in exterior three-dimensional domains Ω with smooth boundary. The continuity equation is substituted by the equation -ε²Δp + div u = 0, and a Neumann boundary condition for the pressure is added. Using parameter dependent Sobolev norms, for bounded domains and for sufficiently smooth data we prove convergence for the velocity part and convergence for the pressure to the solution of the Stokes problem, with δ arbitrarily...
We consider a finite element discretization by the Taylor–Hood element for the stationary Stokes and Navier–Stokes equations with slip boundary condition. The slip boundary condition is enforced pointwise for nodal values of the velocity in boundary nodes. We prove optimal error estimates in the H1 and L2 norms for the velocity and pressure respectively.