On a mixed finite element method for the Stokes problem in
We present and analyse in this paper a novel colocated Finite Volume scheme for the solution of the Stokes problem. It has been developed following two main ideas. On one hand, the discretization of the pressure gradient term is built as the discrete transposed of the velocity divergence term, the latter being evaluated using a natural finite volume approximation; this leads to a non-standard interpolation formula for the expression of the pressure on the edges of the control volumes. On the other...
We consider the single layer potential associated to the fundamental solution of the time-dependent Oseen system. It is shown this potential belongs to L²(0,∞,H¹(Ω)³) and to H¹(0,∞,V') if the layer function is in L²(∂Ω×(0,∞)³). (Ω denotes the complement of a bounded Lipschitz set; V denotes the set of smooth solenoidal functions in H¹₀(Ω)³.) This result means that the usual weak solution of the time-dependent Oseen function with zero initial data and zero body force may be represented by a single...
This paper is devoted to lower and upper bounds of the hydrodynamical drag for a body in a Stokes flow. We obtain the upper bound since the solution for a flow in an annulus and therefore the hydrodynamical drag can be explicitly derived. The lower bound is obtained by comparison to the Newtonian capacity of a set and with the help of a result due to J. Simon . The chosen approach provides an interesting lower bound which is independent of the interior of the body.
We investigate the existence of weak solutions and their smoothness properties for a generalized Stokes problem. The generalization is twofold: the Laplace operator is replaced by a general second order linear elliptic operator in divergence form and the “pressure” gradient is replaced by a linear operator of first order.
We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term.