The search session has expired. Please query the service again.
Displaying 121 –
140 of
200
We investigate the existence of weak solutions and their smoothness properties for a generalized Stokes problem. The generalization is twofold: the Laplace operator is replaced by a general second order linear elliptic operator in divergence form and the “pressure” gradient is replaced by a linear operator of first order.
We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term.
The LBB condition is well-known to guarantee the stability of a finite
element (FE) velocity - pressure pair in incompressible flow calculations.
To ensure the condition to be satisfied a certain constant should be positive and
mesh-independent. The paper studies the dependence of the LBB condition on the
domain geometry. For model domains such as strips and rings the
substantial dependence of this constant on geometry aspect ratios is observed.
In domains with highly anisotropic substructures...
The existence for the Cauchy-Neumann problem for the Stokes system in a bounded domain is proved in a class such that the velocity belongs to , where r > 3. The proof is divided into three steps. First, the existence of solutions is proved in a half-space for vanishing initial data by applying the Marcinkiewicz multiplier theorem. Next, we prove the existence of weak solutions in a bounded domain and then we regularize them. Finally, the problem with nonvanishing initial data is considered....
We prove the existence of solutions to the evolutionary Stokes system in a bounded domain Ω ⊂ ℝ³. The main result shows that the velocity belongs either to or to with p > 3 and s ∈ ℝ₊ ∪ 0. The proof is divided into two steps. First the existence in for k ∈ ℕ is proved. Next applying interpolation theory the existence in Besov spaces in a half space is shown. Finally the technique of regularizers implies the existence in a bounded domain. The result is generalized to the spaces and with...
In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate...
This article deals with the solvability of the boundary-value problem for the Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in a bounded domain. Such problems arise when steady flows of fluids in domains with rough boundaries are approximated as flows in domains with smooth boundaries. It is proved by means of the Galerkin method that the boundary-value problem has a unique weak solution when the body force and the variability of the surface friction are...
We give the estimate for the Stokes semigroup in a perturbed half-space and some global in time existence theorems for small solutions to the Navier-Stokes equation.
Currently displaying 121 –
140 of
200