Displaying 521 – 540 of 1082

Showing per page

New regularity results for a generic model equation in exterior 3D domains

Stanislav Kračmar, Patrick Penel (2005)

Banach Center Publications

We consider a generic scalar model for the Oseen equations in an exterior three-dimensional domain. We assume the case of a non-constant coefficient function. Using a variational approach we prove new regularity properties of a weak solution whose existence and uniqueness in anisotropically weighted Sobolev spaces were proved in [10]. Because we use some facts and technical tools proved in the above mentioned paper, we give also a brief review of its results and methods.

New results on the Burgers and the linear heat equations in unbounded domains.

J.I. Díaz, S. González (2005)

RACSAM

We consider the Burgers equation and prove a property which seems to have been unobserved until now: there is no limitation on the growth of the nonnegative initial datum u0(x) at infinity when the problem is formulated on unbounded intervals, as, e.g. (0 +∞), and the solution is unique without prescribing its behaviour at infinity. We also consider the associate stationary problem. Finally, some applications to the linear heat equation with boundary conditions of Robin type are also given.

New wall laws for the unsteady incompressible Navier-Stokes equations on rough domains

Gabriel R. Barrenechea, Patrick Le Tallec, Frédéric Valentin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Different effective boundary conditions or wall laws for unsteady incompressible Navier-Stokes equations over rough domains are derived in the laminar setting. First and second order unsteady wall laws are proposed using two scale asymptotic expansion techniques. The roughness elements are supposed to be periodic and the influence of the rough boundary is incorporated through constitutive constants. These constants are obtained by solving steady Stokes problems and so they are calculated only once....

New Wall Laws for the Unsteady Incompressible Navier-Stokes Equations on Rough Domains

Gabriel R. Barrenechea, Patrick Le Tallec, Frédéric Valentin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Different effective boundary conditions or wall laws for unsteady incompressible Navier-Stokes equations over rough domains are derived in the laminar setting. First and second order unsteady wall laws are proposed using two scale asymptotic expansion techniques. The roughness elements are supposed to be periodic and the influence of the rough boundary is incorporated through constitutive constants. These constants are obtained by solving steady Stokes problems and so they are calculated only...

Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems

V. V. Chepyzhov, M. I. Vishik (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g ( x , t ) . We assume that g ( x , t ) is a translation compact function and the corresponding Grashof number is small. Then the global attractor has a simple structure: it is the closure of all the values of the unique bounded complete trajectory of the Navier–Stokes system. In particular, if g ( x , t ) is a quasiperiodic function with respect to t , then the attractor is a continuous image of a torus. Moreover the...

Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems

V. V. Chepyzhov, M. I. Vishik (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global attractor of the non-autonomous 2D Navier–Stokes system with time-dependent external force g(x,t). We assume that g(x,t) is a translation compact function and the corresponding Grashof number is small. Then the global attractor has a simple structure: it is the closure of all the values of the unique bounded complete trajectory of the Navier–Stokes system. In particular, if g(x,t) is a quasiperiodic function with respect to t, then the attractor is a continuous image...

Non-Newtonian fluids and function spaces

Růžička, Michael, Diening, Lars (2007)

Nonlinear Analysis, Function Spaces and Applications

In this note we give an overview of recent results in the theory of electrorheological fluids and the theory of function spaces with variable exponents. Moreover, we present a detailed and self-contained exposition of shifted N -functions that are used in the studies of generalized Newtonian fluids and problems with p -structure.

Numerical analysis of a Stokes interface problem based on formulation using the characteristic function

Yoshiki Sugitani (2017)

Applications of Mathematics

Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates...

Currently displaying 521 – 540 of 1082