Displaying 561 – 580 of 1088

Showing per page

On a construction of weak solutions to non-stationary Stokes type equations by minimizing variational functionals and their regularity

Hiroshi Kawabi (2005)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we prove that the regularity property, in the sense of Gehring-Giaquinta-Modica, holds for weak solutions to non-stationary Stokes type equations. For the construction of solutions, Rothe's scheme is adopted by way of introducing variational functionals and of making use of their minimizers. Local estimates are carried out for time-discrete approximate solutions to achieve the higher integrability. These estimates for gradients do not depend on approximation.

On a shape control problem for the stationary Navier-Stokes equations

Max D. Gunzburger, Hongchul Kim, Sandro Manservisi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

An optimal shape control problem for the stationary Navier-Stokes system is considered. An incompressible, viscous flow in a two-dimensional channel is studied to determine the shape of part of the boundary that minimizes the viscous drag. The adjoint method and the Lagrangian multiplier method are used to derive the optimality system for the shape gradient of the design functional.

On a stabilized colocated Finite Volume scheme for the Stokes problem

Robert Eymard, Raphaèle Herbin, Jean Claude Latché (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We present and analyse in this paper a novel colocated Finite Volume scheme for the solution of the Stokes problem. It has been developed following two main ideas. On one hand, the discretization of the pressure gradient term is built as the discrete transposed of the velocity divergence term, the latter being evaluated using a natural finite volume approximation; this leads to a non-standard interpolation formula for the expression of the pressure on the edges of the control volumes. On the other...

On a steady flow in a three-dimensional infinite pipe

Paweł Konieczny (2006)

Colloquium Mathematicae

The paper examines the steady Navier-Stokes equations in a three-dimensional infinite pipe with mixed boundary conditions (Dirichlet and slip boundary conditions). The velocity of the fluid is assumed to be constant at infinity. The main results show the existence of weak solutions with no restriction on smallness of the flux vector and boundary conditions.

Currently displaying 561 – 580 of 1088