Displaying 761 – 780 of 1088

Showing per page

Remark on regularity of weak solutions to the Navier-Stokes equations

Zdeněk Skalák, Petr Kučera (2001)

Commentationes Mathematicae Universitatis Carolinae

Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space L 2 ( 0 , T , W 1 , 3 ( 𝛺 ) 3 ) are regular.

Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data

Zujin Zhang (2016)

Annales Polonici Mathematici

We consider the axisymmetric Navier-Stokes equations with non-zero swirl component. By invoking the Hardy-Sobolev interpolation inequality, Hardy inequality and the theory of * A β (1 < β < ∞) weights, we establish regularity criteria involving u r , ω z or ω θ in some weighted Lebesgue spaces. This improves many previous results.

Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations

Zujin Zhang, Chenxuan Tong (2022)

Applications of Mathematics

We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that | ω r ( x , t ) | + | ω z ( r , t ) | C r 10 , 0 < r 1 2 . By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing ω r , ω z and ω θ / r on different hollow cylinders, we are able to improve it and obtain | ω r ( x , t ) | + | ω z ( r , t ) | C | ln r | r 17 / 2 , 0 < r 1 2 .

Currently displaying 761 – 780 of 1088