Displaying 881 – 900 of 1088

Showing per page

Structural Evolution of the Taylor Vortices

Tian Ma, Shouhong Wang (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We classify in this article the structure and its transitions/evolution of the Taylor vortices with perturbations in one of the following categories: a) the Hamiltonian vector fields, b) the divergence-free vector fields, and c). the solutions of the Navier-Stokes equations on the two-dimensional torus. This is part of a project oriented toward to developing a geometric theory of incompressible fluid flows in the physical spaces.

Study of a three component Cahn-Hilliard flow model

Franck Boyer, Céline Lapuerta (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we propose a new diffuse interface model for the study of three immiscible component incompressible viscous flows. The model is based on the Cahn-Hilliard free energy approach. The originality of our study lies in particular in the choice of the bulk free energy. We show that one must take care of this choice in order for the model to give physically relevant results. More precisely, we give conditions for the model to be well-posed and to satisfy algebraically and dynamically consistency...

Sull'evoluzione del profilo di velocità in moto laminare a bassi numeri di Reynolds

Giambattista Scarpi (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The development of velocity distribution in plane laminar flow is examined, neglecting inertial terms in respect to viscous ones. A solution is given, which satisfies all boundary conditions.

Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method

Pengzhan Huang (2014)

Applications of Mathematics

This paper presents a superconvergence result based on projection method for stabilized finite element approximation of the Stokes eigenvalue problem. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The paper complements the work of Li et al. (2012), which establishes the superconvergence result of the Stokes equations by the stabilized finite element method. Moreover, numerical tests confirm the theoretical analysis.

Sur le temps de vie de la turbulence bidimensionnelle

Thierry Gallay, Luis Miguel Rodrigues (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

On sait que toutes les solutions de l’équation de Navier-Stokes dans R 2 dont le tourbillon est intégrable convergent lorsque t vers un écoulement autosimilaire appelé tourbillon d’Oseen. Dans cet article, nous donnons une estimation du temps nécessaire à la solution pour atteindre un voisinage du tourbillon d’Oseen à partir d’une donnée initiale arbitraire, mais bien localisée en espace. Nous obtenons ainsi une borne supérieure sur le temps de vie de la turbulence bidimensionnelle libre, en fonction...

Sur l’équation de Prandtl

David Gérard-Varet, Emmanuel Dormy (2008/2009)

Séminaire Équations aux dérivées partielles

L’objet de cette note est le problème de Cauchy pour l’équation de Prandtl, dans des espaces de régularité Sobolev. Nous discutons de façon synthétique des résultats récents [4], établissant le caractère fortement linéairement mal posé de ce problème.

The boundary regularity of a weak solution of the Navier-Stokes equation and its connection to the interior regularity of pressure

Jiří Neustupa (2003)

Applications of Mathematics

We assume that 𝕧 is a weak solution to the non-steady Navier-Stokes initial-boundary value problem that satisfies the strong energy inequality in its domain and the Prodi-Serrin integrability condition in the neighborhood of the boundary. We show the consequences for the regularity of 𝕧 near the boundary and the connection with the interior regularity of an associated pressure and the time derivative of 𝕧 .

The Cauchy problem for the homogeneous time-dependent Oseen system in 3 : spatial decay of the velocity

Paul Deuring (2013)

Mathematica Bohemica

We consider the homogeneous time-dependent Oseen system in the whole space 3 . The initial data is assumed to behave as O ( | x | - 1 - ϵ ) , and its gradient as O ( | x | - 3 / 2 - ϵ ) , when | x | tends to infinity, where ϵ is a fixed positive number. Then we show that the velocity u decays according to the equation | u ( x , t ) | = O ( | x | - 1 ) , and its spatial gradient x u decreases with the rate | x | - 3 / 2 , for | x | tending to infinity, uniformly with respect to the time variable t . Since these decay rates are optimal even in the stationary case, they should also be the best possible...

Currently displaying 881 – 900 of 1088