Displaying 161 – 180 of 182

Showing per page

Application of homogenization theory related to Stokes flow in porous media

Børre Bang, Dag Lukkassen (1999)

Applications of Mathematics

We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.

Approximate controllability for a linear model of fluid structure interaction

Axel Osses, Jean-Pierre Puel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a linear model of interaction between a viscous incompressible fluid and a thin elastic structure located on a part of the fluid domain boundary, the other part being rigid. After having given an existence and uniqueness result for the direct problem, we study the question of approximate controllability for this system when the control acts as a normal force applied to the structure. The case of an analytic boundary has been studied by Lions and Zuazua in [9] where, in particular,...

Approximate controllability of a hydro-elastic coupled system

Jacques-Louis Lions, Enrique Zuazua (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We analyze the controllability of the motion of a fluid by means of the action of a vibrating shell coupled at the boundary of the fluid. The model considered is linear. We study its approximate controllability, i.e. whether the fluid may reach a dense set of final configurations at a given time. We show that this problem can be reduced to a unique continuation question for the Stokes system. We prove that this unique continuation property holds generically among analytic domains and therefore,...

Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods

Shanghui Jia, Hehu Xie, Xiaobo Yin, Shaoqin Gao (2009)

Applications of Mathematics

In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q 1 rot and E Q 1 rot . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.

Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method

Wei Chen, Qun Lin (2006)

Applications of Mathematics

By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally,...

Asymptotic behavior of a steady flow in a two-dimensional pipe

Piotr Bogusław Mucha (2003)

Studia Mathematica

The paper investigates the asymptotic behavior of a steady flow of an incompressible viscous fluid in a two-dimensional infinite pipe with slip boundary conditions and large flux. The convergence of the solutions to data at infinities is examined. The technique enables computing optimal factors of exponential decay at the outlet and inlet of the pipe which are unsymmetric for nonzero fluxes of the flow. As a corollary, the asymptotic structure of the solutions is obtained. The results show strong...

Asymptotics and stability for global solutions to the Navier-Stokes equations

Isabelle Gallagher, Dragos Iftimie, Fabrice Planchon (2003)

Annales de l’institut Fourier

We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution.

Currently displaying 161 – 180 of 182