Analytic solutions for the classical two-phase Stefan problem
A two-dimensional Stefan problem is usually introduced as a model of solidification, melting or sublimation phenomena. The two-phase Stefan problem has been studied as a direct problem, where the free boundary separating the two regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the enthalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez, 1980), or a control problem (El Bagdouri,...
We illustrate how some interesting new variational principles can be used for the numerical approximation of solutions to certain (possibly degenerate) parabolic partial differential equations. One remarkable feature of the algorithms presented here is that derivatives do not enter into the variational principles, so, for example, discontinuous approximations may be used for approximating the heat equation. We present formulae for computing a Wasserstein metric which enters into the variational...
The critical case of solvability of a two-phase Stefan problem with supercooled liquid phase is considered. Asymptotic analysis is performed of the behaviour of the free boundary in the vicinity of the initial time.
We consider a parabolic 2D Free Boundary Problem, with jump conditions at the interface. Its planar travelling-wave solutions are orbitally stable provided the bifurcation parameter does not exceed a critical value . The latter is the limit of a decreasing sequence of bifurcation points. The paper deals with the study of the 2D bifurcated branches from the planar branch, for small k. Our technique is based on the elimination of the unknown front, turning the problem into a fully nonlinear...
The model of coupled heat transport and Darcian water flow in unsaturated soils and in conditions of freezing and thawing is analyzed. In this contribution, we present results concerning the existence of the numerical solution. Numerical scheme is based on semi-implicit discretization in time. This work illustrates its performance for a problem of freezing processes in vertical soil columns.