Définition de l'intégrale de Feynman et processus à sauts
Page 1 Next
Ph. Combe, R. Rodriguez, M. Sirugue, M. Sirugue-Collin (1982)
Recherche Coopérative sur Programme n°25
Karl Michael Schmidt (1995)
Forum mathematicum
Mathieu Lewin (2013)
Journées Équations aux dérivées partielles
This article is a review of recent results with Phan Thành Nam, Nicolas Rougerie, Sylvia Serfaty and Jan Philip Solovej. We consider a system of bosons with an interaction of intensity (mean-field regime). In the limit , we prove that the first order in the expansion of the eigenvalues of the many-particle Hamiltonian is given by the nonlinear Hartree theory, whereas the next order is predicted by the Bogoliubov Hamiltonian. We also discuss the occurrence of Bose-Einstein condensation in these...
A. Crumeyrolle (1972)
Annales de l'I.H.P. Physique théorique
F. Klopp (1995/1996)
Séminaire Équations aux dérivées partielles (Polytechnique)
André Martinez (1988)
Journées équations aux dérivées partielles
Mouez Dimassi (1991/1992)
Séminaire Équations aux dérivées partielles (Polytechnique)
Mouez Dimassi (1994)
Annales de l'I.H.P. Physique théorique
László Erdös, Michael Loss, Vitali Vougalter (2000)
Annales de l'institut Fourier
The Li-Yau semiclassical lower bound for the sum of the first eigenvalues of the Dirichlet–Laplacian is extended to Dirichlet– Laplacians with constant magnetic fields. Our method involves a new diamagnetic inequality for constant magnetic fields.
Ruffing, Andreas (2000)
Discrete Dynamics in Nature and Society
Mohamed El Makrini, Benjamin Jourdain, Tony Lelièvre (2007)
ESAIM: Mathematical Modelling and Numerical Analysis
The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state energies of molecules. In this paper, we focus on implementations of this method which consist in exploring the configuration space with a fixed number of random walkers evolving according to a stochastic differential equation discretized in time. We allow stochastic reconfigurations of the walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional example, we prove...
T. Kato, K. Yajima (1991)
Annales de l'I.H.P. Physique théorique
Saidachmat N. Lakaev (1986)
Commentationes Mathematicae Universitatis Carolinae
Ruffing, Andreas (2000)
Discrete Dynamics in Nature and Society
Gorman, Arthur D. (1985)
International Journal of Mathematics and Mathematical Sciences
Monique Combescure, Didier Robert (1994)
Annales de l'I.H.P. Physique théorique
Estrada, R., Fulling, S.A. (1999)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Р. Бетлер, В.Б. Матвеев (1994)
Zapiski naucnych seminarov POMI
Mavromatis, Harry A. (2000)
International Journal of Mathematics and Mathematical Sciences
Johan Andries, Mieke De Cock (1998)
Banach Center Publications
A quantum dynamical system, mimicking the classical phase doubling map on the unit circle, is formulated and its ergodic properties are studied. We prove that the quantum dynamical entropy equals the classical value log2 by using compact perturbations of the identity as operational partitions of unity.
Page 1 Next