Far from equilibrium steady states of 1D-Schrödinger–Poisson systems with quantum wells I
A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jakić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.
For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.
The ground-state energy and properties of any many-electron atom or molecule may be rigorously computed by variationally computing the two-electron reduced density matrix rather than the many-electron wavefunction. While early attempts fifty years ago to compute the ground-state 2-RDM directly were stymied because the 2-RDM must be constrained to represent an N-electron wavefunction, recent advances in theory and optimization have made direct computation of the 2-RDM possible. The constraints in...
In these notes, conjectures about the exact semi-classical expansion of eigenvalues of hamiltonians corresponding to potentials with degenerate minima, are recalled. They were initially motivated by semi-classical calculations of quantum partition functions using a path integral representation and have later been proven to a large extent, using the theory of resurgent functions. They take the form of generalized Bohr--Sommerfeld quantization formulae. We explain here their...
We consider the Dirac-type operators D + a, a is a paravector in the Clifford algebra. For this operator we state a Cauchy-Green formula in the spaces and . Further, we consider the Cauchy problem for this operator.