The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 65

Showing per page

On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes

Mathias Rousset (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper considers Schrödinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) of the Dirichlet groundstate energy when the associated domain is perturbed. This interpretation relies on the distribution on the boundary of a stopped random process with Feynman-Kac weights. Practical computations require in addition the explicit approximation of the normal derivative of the groundstate on the boundary. We then propose to use this formulation in the...

On m -sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry

Ognjen Milatovic (2004)

Commentationes Mathematicae Universitatis Carolinae

We consider a Schrödinger-type differential expression H V = * + V , where is a C -bounded Hermitian connection on a Hermitian vector bundle E of bounded geometry over a manifold of bounded geometry ( M , g ) with metric g and positive C -bounded measure d μ , and V is a locally integrable section of the bundle of endomorphisms of E . We give a sufficient condition for m -sectoriality of a realization of H V in L 2 ( E ) . In the proof we use generalized Kato’s inequality as well as a result on the positivity of u L 2 ( M ) satisfying the...

On nodal sets and nodal domains on S 2 and 2

Alexandre Eremenko, Dmitry Jakobson, Nikolai Nadirashvili (2007)

Annales de l’institut Fourier

We discuss possible topological configurations of nodal sets, in particular the number of their components, for spherical harmonics on S 2 . We also construct a solution of the equation Δ u = u in 2 that has only two nodal domains. This equation arises in the study of high energy eigenfunctions.

On phase segregation in nonlocal two-particle Hartree systems

Walter Aschbacher, Marco Squassina (2009)

Open Mathematics

We prove the phase segregation phenomenon to occur in the ground state solutions of an interacting system of two self-coupled repulsive Hartree equations for large nonlinear and nonlocal interactions. A self-consistent numerical investigation visualizes the approach to this segregated regime.

Currently displaying 1 – 20 of 65

Page 1 Next